

Information Entropy Monte Carlo Simulation

March, 27th, 2009

Ayato Kato

Rock Physics

Outline

Shannon's Information Entropy

Monte Carlo Simulation

Which attribute(s) should We Use ?

Innumerable Seismic Attributes

Туре	Seismic	Major Geological significance
	Attribute	
Conventional property	Amplitude	Lithological contrast, bedding continuity
	Interval velocity	Lithology, Porosity, Fluid Content
	Acoustic impedance	Lithology, Porosity, Fluid Content
Volume-related attribute	Reflection geometry	Reservoir Architecture, Sedimentary Structure
(Multi-trace attribute)	Trace continuity	Fault geometry, Fault distribution, Stratigraphic continuity
	Time curvature, Dip, Azimuth	Detailed Reservoir Architecture, Fault geometry, Fault distribution, Fracture density
Pre-stack attribute	AVO	Fluid Content, Lithology, Porosity
	Impedance (elastic/S-wave)	
	Poisson's ratio	
	$^{\lambda, \mu}$ (Lame constant)	
	AVOZ	Fracture Orientation, Fracture Density, Fluid Content
Instantaneous attribute	Instantaneous phase	Bedding continuity
	Instantaneous Frequency	Bed thickness, lithologic contrast, fluid content
Miscellaneous attribute	Frequency Attenuation	Fluid content
	Anything computed from seismic traces	???

For the purposes of predicting porosity, which attributes should we use?

- AVO P₀ & G
- AI & EI
- λρ & μρ
- Vp/Vs etc

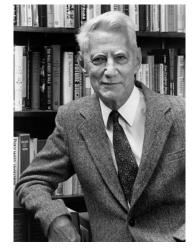
Shannon's Information Entropy can give us the solution quantitatively.

Shannon's Information Theory

Shannon and Weaver (1949) "The Mathematical Theory of Communication"

Defined **Quantity of Information**

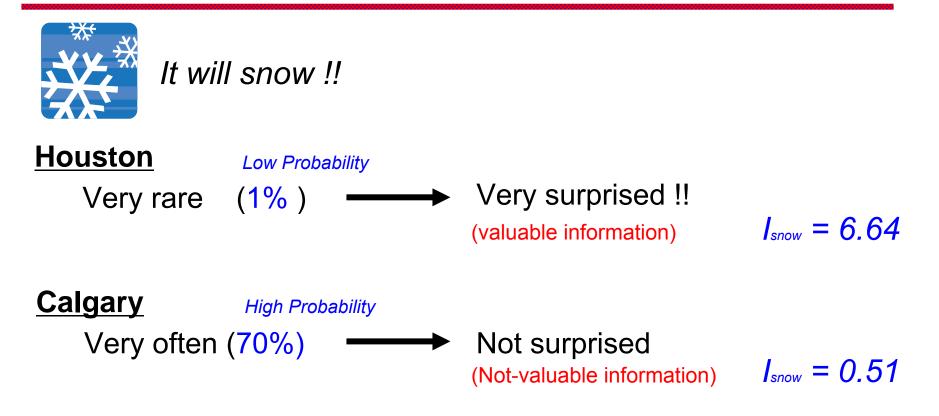
Information Content



Dr. Claude Shannon

- Information Entropy
- Mutual Information

Information Content



Information Content (Quantity of information)

$$I = -\log P$$

How surprised one would be if the event happened.

Information Entropy

Expected Value of Information Content

Information Entropy

$$H(X) = -\sum_{i}^{n} P_{i} \cdot \log P_{i}$$

$$X = \{x_1, \cdots, x_N\}$$

Expected Surprise
Quantity of uncertainty associated with P

<u>Houston</u>	

Xi	Pi (%)
Sunny	33
Cloudy	33
Rain	33
Snow	1

<u>Calgary</u>

H=1.36

Forecast is easy Uncertainty is small

Xi	Pi (%)
Sunny	10
Cloudy	10
Rain	10
Snow	70

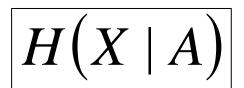
<u>NY</u>
H=2.00
Forecast is difficult

Uncertainty is large

Xi	Pi (%)
Sunny	25
Cloudy	25
Rain	25
Snow	25

Conditional Entropy

Conditional Information Entropy



Conditional Information Entropy at a given additional information (A)

<u>IN T</u>	Weather
	Sunny
H(X)=2.00	Cloudy
Uncertainty is large	Rain
encontainty to large	Spour

Weather	Pi (%)
Sunny	25
Cloudy	25
Rain	25
Snow	25

e.g. A = atmospheric pressure change data

At given additional information A

H(X|A)=1.54

Uncertainties reduce

Weather	Pi (%)
Sunny	50
Cloudy	25
Rain	10
Snow	5

Mutual Information

$$I(X \mid A) = H(X) - H(X \mid A)$$

Quantity of uncertainty reduced by additional information **A**

Our Case : Porosity Prediction

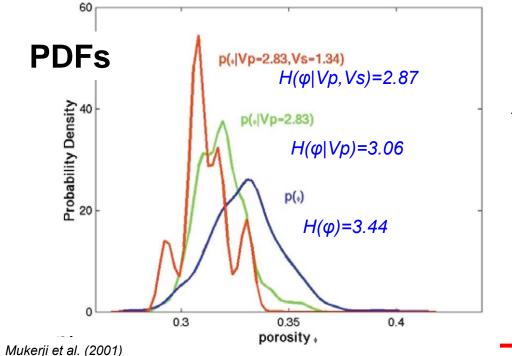
Porosity Prediction by Seismic Attribute

X : Porosity (continuous variable)

A : Seismic Attribute

H(X) : Information Entropy for Porosity's PDF

H(X|A) : Information Entropy for Porosity's PDF at given seismic attribute



Adding more seismic attributes

 $\begin{array}{rcl} \mathsf{PDF} \mbox{ shape } \to & \mathsf{Narrow}, \mbox{ steep} \\ \mathsf{Uncertainty } \to & \mathsf{Decrease} \\ \mathsf{In}. \mbox{ Entropy } \to & \mathsf{Decrease} \end{array}$

Rock Physics 8

Information carried by Seismic Attributes

For example, X = Porosity A = Seismic Attribute

Mutual Information

$$I(X \mid A) = H(X) - H(X \mid A)$$

Information entropy

Conditional entropy at given A

- Mutual Information can be regarded as the reduced uncertainty by the seismic attributes.
- Thus, we should choose the one which will maximize the mutual information.

Case Studies

North Sea Tertiary Turbiditic Reservoir

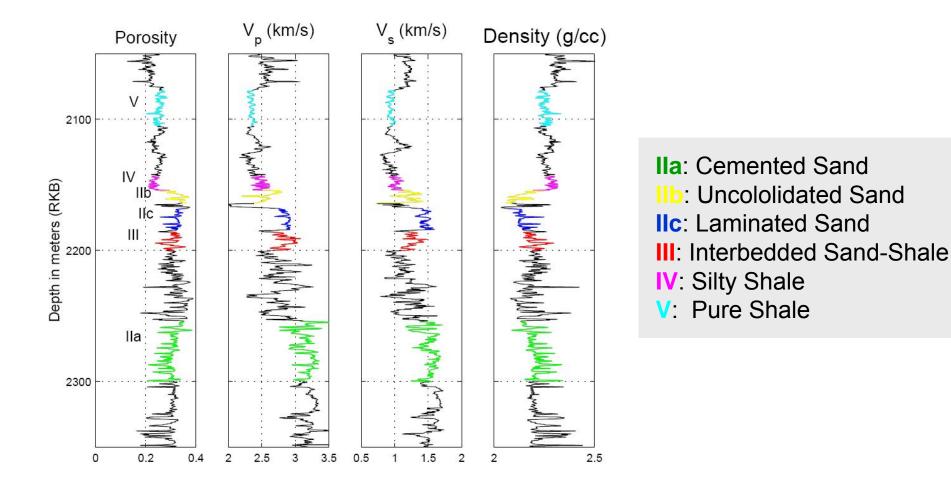
- Case I
 - Facies Identification
- Case II
 - Pore Fluid Identification $H(fluid \mid attributes)$

H(facies | attributes)

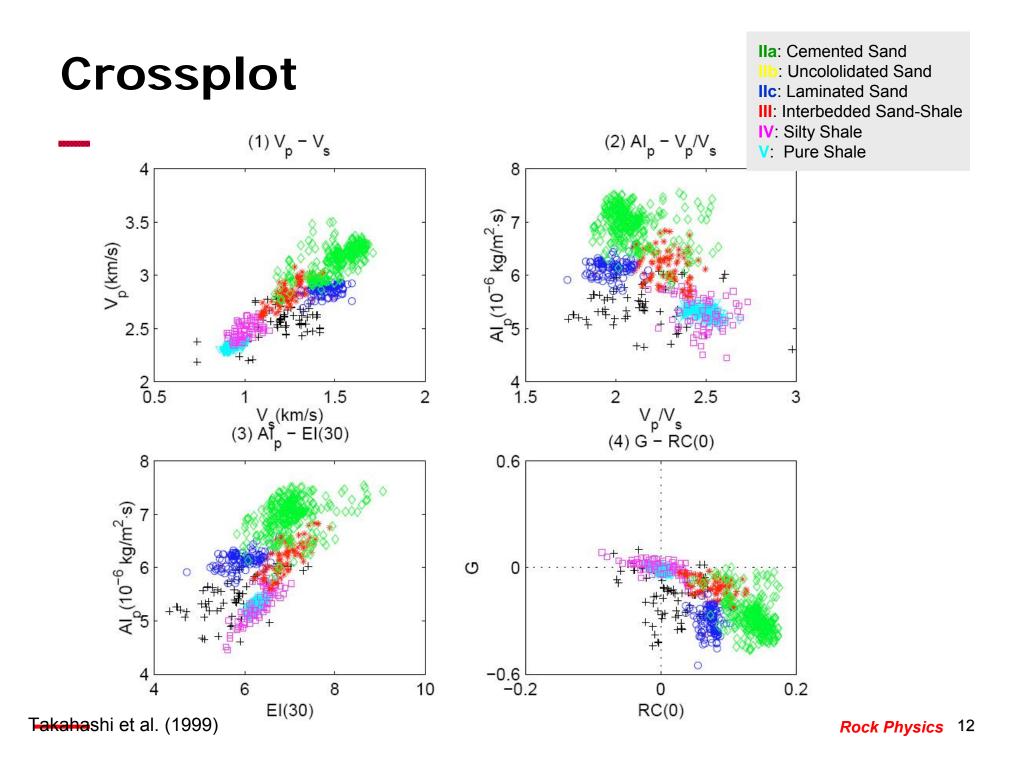
- References
 - Tapan et al. (2001)
 - Takahashi et al (1999)

Well Log Data

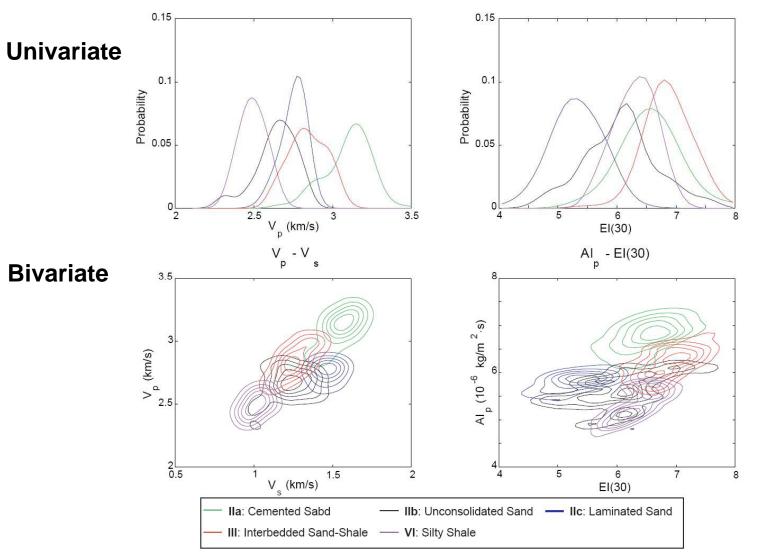
Facies Classification in Well Log Data



Takahashi et al. (1999)



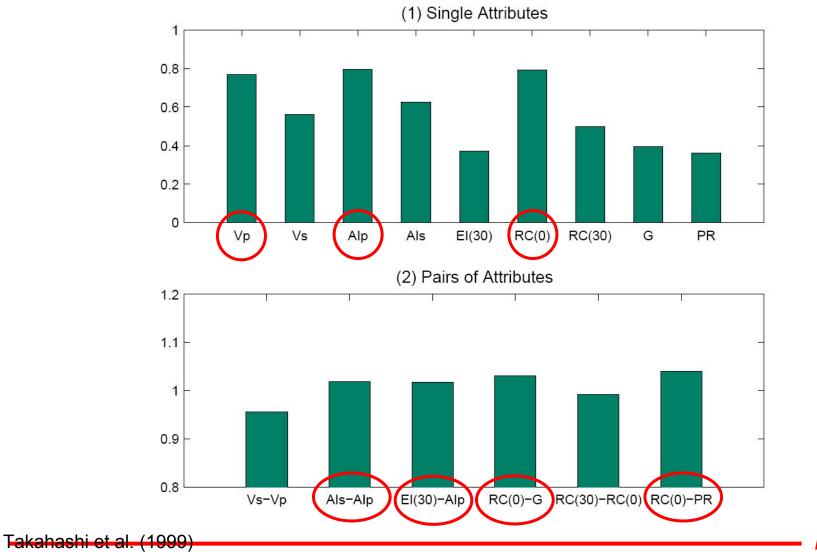
Conditional probability distributions



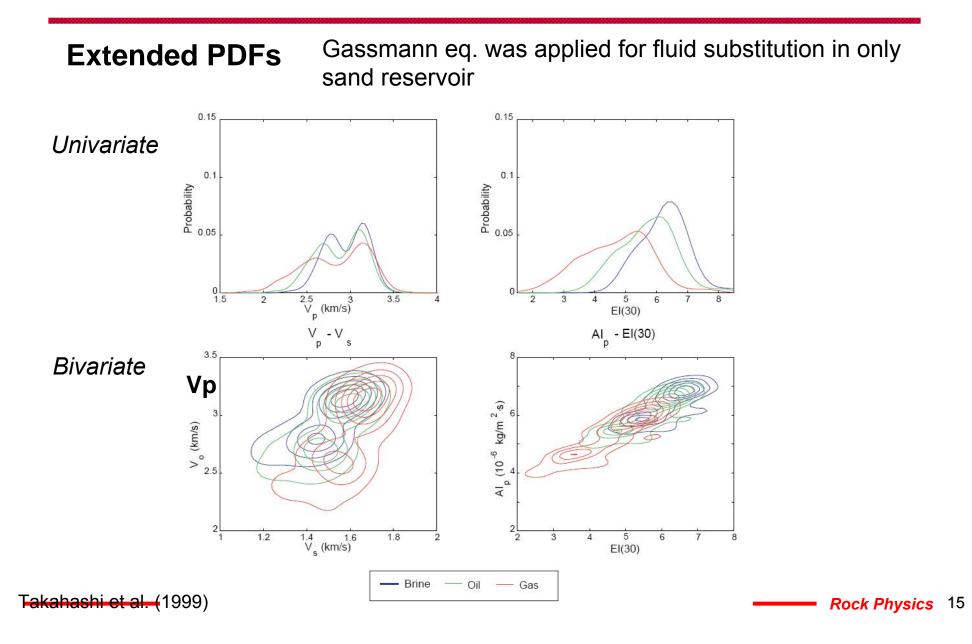
Takahashi et al. (1999)

Mutual Information

Information about lithofacies carried by Seismic attributes

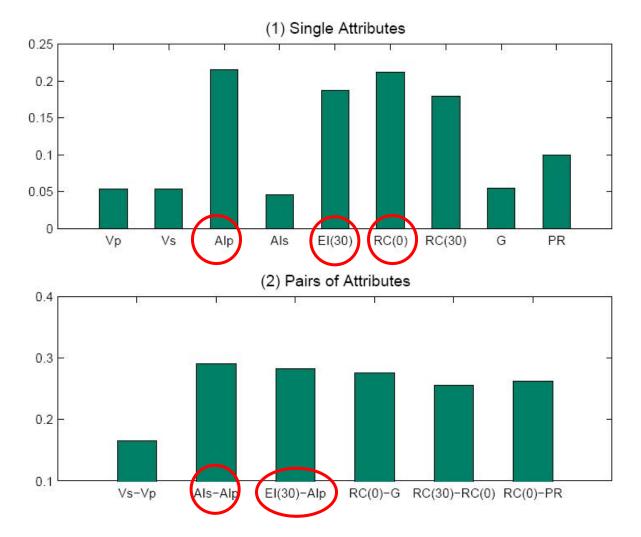


Case Study 2 (Pore Fluid)



Mutual Information

Information about **pore fluid** carried by Seismic attributes



Takahashi et al. (1999)

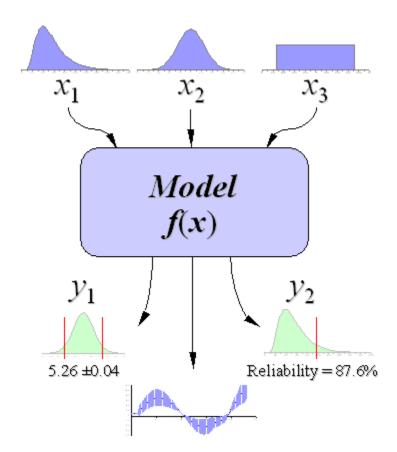
Discussions

Linear measures of uncertainty, such as variance (σ^2) and covariance (σ_{12}), can be used instead of the entropy (H) ?

- Variance (covariance) can work only at limited situation
 - Parametric PDFs, such as Gaussian distribution
 - Continuous variable
- Information Entropy can work more flexibly
 - Nonparametric PDFs
 - Categorical variables (Shale, Sand)

The Entropy offers a more flexible representation of the state of information about the rock.

Monte Carlo Simulation

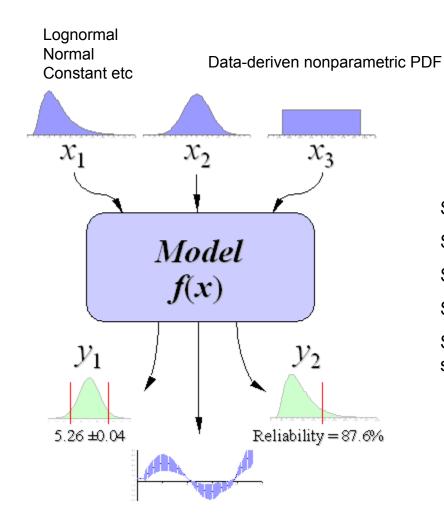


A technique using random numbers for probabilistic solution of a model

- Model is nonlinear system
- Input parameters with uncertainty
- Uncertainty analysis instead of deterministic method

http://www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html

Monte Carlo Simulation



Step 1: Create a model, $y = f(x_1, x_2, ..., x_q)$.

Step 2: Generate a set of random inputs, x_{i1} , x_{i2} , ..., x_{iq} .

Step 3: Use the model to obtain outputs.

Step 4: Repeat steps 2 and 3 for i = 1 to n.

Step 5: Analyze the results using histograms, summary statistics, confidence intervals, etc.

http://www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html

Thank you for attentions