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Summary

For isotropic, homogeneous porous materials, Gassmann’s

(1951) equations are physically constrained by the Voigt

and Reuss bounds and critical porosity. .  These bounds 

provide stricter constraints on input parameters and output 

results of fluid saturation effects on bulk modulus.  We 

recast the Gassmann's relations in terms of a porosity-

dependent normalized modulus Kn, and pore fluid

sensitivity in terms of a rock gain function G.   These 

simplified Gassmann’s relations suggest that correct input 

of grain bulk modulus and fluid modulus is key for accurate 

estimation of fluid saturation effects.   We have developed 

new empirical relation (Han & Batzle 2000) to calculate

fluid properties.  Measured data on sandstone suggest that 

the gain function for reservoir sandstones (porosity of 20-

30%) is around 2 and increases with increasing clay

content.  We also empirically estimate grain bulk modulus 

for clean and shaly sandstone based on measured velocities. 

Introduction

Gassmann’s (1951) equations are the most widely used 

relations to calculate seismic velocity changes due to 

different fluid saturations in reservoirs.  These equations 

are predominant in the analysis of direct hydrocarbon

indicators (DHI) such as amplitude ‘bright spots’, 

amplitude versus offset (AVO) as well as for time-lapse 

reservoir monitoring.  Despite the popularity of 

Gassmann’s equations and their incorporation within most

software packages for seismic reservoir interpretation,

important aspects of these equations have not been 

thoroughly examined. Many efforts have been made to 

understand the operation and application of Gassmann’s 

equations (Mavko and Mukerji, 1995, Mavko, et al., 1998, 

Sengupta, and Movko., 1999, Nolen-Hoeksema, 2000).

Most these works have attempted to isolate individual 

parameter effects.

Because the full implications of parameter interactions and 

interrelationships are not well understood, in general 

practice, there are few constraints placed on input

parameters and there is little quality control of results. This

is a particular problem for automated analysis in which 

results are usually taken at face value. In this paper, we will 

discuss typical bounds to provide stricter constraints on the

input parameters and output results, formulate simplified 

Gassmann’s equation, examine the nature of pore fluid 

sensitivity (gain function) and provide application tips.

Modulus and Gassmann’s Equation 

Typical P- and S-wave velocities measured on dry and 

water saturated sands are shown in Figure 1.
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Fig. 1. Measured Vp and Vs versus differential 

pressure on dry and water saturated sands. 

Usually, upon water saturation from the dry state, P-wave 

increases slightly and S-wave decrease slightly.  The 

velocity response to water saturation is rather complex and

physically controlled by the influence of the pore fluid on 

the rock moduli (equation 1). 
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However, if we plot bulk and shear modulus as shown in 

Figure 2, we can clearly separate fluid saturation effects on 

bulk and shear moduli.

Fig. 2. Bulk and shear modulus based on measured 

velocities on dry and water saturated sands. 
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Typically we see a very large increase of bulk modulus is 

due to water saturation and negligible effect on shear
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modulus.   This reflects the fact that bulk deformation 

produces a pore volume change (and thus a fluid pressure 

change), but shear deformation does not.  Therefore, pore 

fluids effectively stiffen the  rock frame and bulk modulus, 

but  does not influence shear rigidity (assuming the fluid

has negligible viscosity). Although bulk modulus is not 

directly measured in seismic data, we should use this 

modulus as a more direct fluid indicator.

Gassmann’s equations describe the fluid saturation effect at

‘zero’ frequency.  They provide a low bound of fluid

saturation effects on bulk modulus under undrained

conditions.   We have shown that for porous sands, 

Gassmann’s equation is normally valid (Batzle and Han, 

2001) and can be expressed as:
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Rigidity is not sensitive to different pore fluids 

drysat
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Here Ks, Kf, Kdry, Ksat, are the bulk moduli of the mineral, 

fluid, dry rock frame, and saturated rock respectively;  is 

porosity; and sat and dry are the saturated and dry rock 

shear moduli.

Constraints on Gassmann’s Equation 

The basic assumptions for Gassmann’s equation do not 

provide strong constraints  rock parameters.  In the 

equations (1), there are five listed parameters and typically

the only applied constraint in fluid substitution 

investigations is that the parameters are physically

meaningful (>0).  When applying Gassmann’s equation, 

input parameters in general are handled as completely

independent.  Values for Ks and Kf are estimated or

assumed.  Ksat or Kdry are calculated from Vp and Vs, and

density, which come from log data or are somehow 

estimated  from porosity .  Incompatible or mismatched

data often generate wrong or even unphysical results, such

as a negative modulus.   In reality, only Ks and Kf, are 

completely independent. Ksat, Kdry and porosity  are 

actually closely correlated.  Bounds on Kdry as a function of

porosity, for example, constrain the bounds of Ksat.

If we assume the porous media is a Voigt material, which is 

a high bound for Kdry,

)1(sdry KK   (4) 

Putting Equation (4) into Equation (2) gives 

fKK (5)

Since the Voigt bound is the stiffest upper limit, the fluid 

saturation effect on bulk modulus will be a minimum as

shown in Figure 3. This is the first constrain derived from 

the Gassmann’s equation: the minimum of bulk modulus 

increment due to fluid saturation is proportional to porosity

of rock and modulus of pore fluid. 
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Fig. 3. The Voigt and Reuss bounds for dry rock, fluid 

saturated rock and fluid saturation effect predicted by

the Gassmann’s equation. 

The Reuss bound is the lowest modulus bound for porous

media:
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For any porosity, the Reuss bound on Kdry is equal to zero. 

In this case,
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Again, Gassmann’s equation is consistent with the dry and

fluid saturated Reuss bounds.  This Reuss bounded K

(KR) is the maximum Gassmann’s fluid saturation effect as 

shown in Figure 3.

Based on the critical porosity concept (Nur, 1995), we can 

modify our Voigt model (Figure 3) and provide much 

tighter constrains for dry and fluid saturated bulk modulus. 
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This Voigt triangle provides a linear formulation and a 

graphic procedure for Gassmann's calculation. The 

increment of bulk modulus is here proportional to

normalized porosity and the maximum fluid saturation

effect on bulk modulus at the critical porosity (Figure 3). 

This is consistent to earlier work by Mavko et al., (1995). 

Simplified Gassmann’s Equation 

Gassmann’s formulation is already very simple as shown in 

equation 2 and 3. This is a prime reason for its wide 

application in geophysical techniques for reservoir 

exploration and exploitation.  However, derivation of the 

rock and fluid input parameters often remains ambiguous.

In this section, we regroup Gassmann’s equation with 

combined rock parameters.  Under certain conditions we 

can further simplify this equation. This then separates the

influence of fluid saturation into a lithology or textural

component and a fluid modulus component.

The primary measure of a rock’s compressibility is its 

normalized modulus Kn: the ratio of dry bulk modulus to 

that of the mineral.

sdryn KKK /    (8) 

The normalized modulus can be very complicated

depending on rock texture (porosity, clay content, pore 

geometry, grain size, grain contact, cementation, mineral 

composition, and so on) and reservoir conditions (pressure 

and temperature). The Kn can be ascertained empirically, or 

estimated theoretically.    To a first order, the Kn (x, y, z,…) 

can be simplified as a function of porosity.
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From equation (3), bulk modulus increment is then equal to
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Furthermore, since usually Ks >> Kf , for reservoir rocks 

( >0.1)

fsn KKK )(10 (11)

Therefore,

fKGK )(    (12) 

where G( ) is dry frame properties called the saturation 

Gain function and defined as 
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Equation 12 is a simplified form of Gassmann’s equation 

with clear physical meaning: fluid effects on the rock bulk 

modulus are simply proportional to Gain function G( ) of 

dry rock and decomposed fluid modulus Kf.   The G( ) in 

turn depends on the normalized modulus (Equation 8) and

porosity.  Equation 13 shows that the normalized modulus

must compatible with porosity.  Figure 4 shows upper and 

low bounds of gain function.  Calculated gain function

from velocity data on sandstones (Han, et al, 1986) is

consistent with the bound (Figure 5).
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Fig. 4. Constrain of gain function by the Voigt and 

Reuss bounds
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Fig. 5. Gain function for clean and shaly sands: blue dots 

are based measured ultrasonic data, pink dots are based 

on Gassmann’s calculation. 
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Data reveal that gain function for reservoir sands (20-30% 

porosity) is around 2, and slightly decreases with 

compaction-cementation trend.  Data also suggest low 

dispersion of fluid effects for porous sands.   For shaly

sands, gain function increases depended on clays (Figure

6), which is consistent with that soft clays are highly

stiffened by water. 

Fluid Substitution 

Fluid substitution is a primary application of Gassmann’s

equation.  With a change of fluid saturation from fluid 1 to

fluid 2, the bulk modulus increment is equal to

)()()( 1221 ff KKGK (14)

where G( ) is the saturation gain function, which remain as

a constant as fluid changed.  Fluid modulus is a key

parameter and provides the fundamental limits to seismic 

sensitivity to different fluids.  Hence, realistic pore fluid 

properties should be used in any forward modeling (Han 

and Batzle, 2000a & b).

Lithology Substitution 

Lithology discrimination is also a goal for seismic

interpretation and the applicability of Equation 14 is 

usually overlooked. Furthermore, in modeling  seismic 

response, we often must separate fluid influences from 

lithology effects.  To estimate these effects, we can to

perform “lithology substitution” by using different gain

function as 

fKGGK ))()(()( 2221
(15)

As shown in Equation 13, the gain function is mainly

controlled by the ratio of dry rock bulk tomineral modulus. 

Mineral modulus can have a significant impact on Gassman 

calculation.  Errors due to uncertainty of Ks are less

important for clean high porosity (>25%) rocks. Mixed 

mineral (dirty) and low porosity fractured rocks are more 

sensitive to Ks .  Currently, measurements of the effective 

modulus of mixed mineralogy rocks are sparse.

Alternatively, from measured velocity data on sandstones 

(Han et al, 1986) we obtain empirical prediction for mineral 

modulus as show in Table 1.
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Fig. 6. Gain function as function of clay content: blue 

dots are based measured ultrasonic data, pink dots are

based on Gassmann’s calculation.

Table 1. Garin bulk and shear modulus for clean and 

shaly sands estimated based empirical relation. 

Vp = a - b Por.- c*C Vs = a' - b' Por.-c'*C

K(Gpa) G (Gpa)

400 5.59 6.93 3.52 4.91 1.24 1.39

300 5.55 6.96 3.47 4.84 1.25 1.39

200 5.49 6.94 3.39 4.73 1.26 1.40

100 5.39 7.08 3.29 4.73 1.31 1.44

50 5.26 7.08 3.16 4.77 1.35 1.51

Sandstone Modulus (Han, et al., 1986)

s 39.0 Gpa; Ks = -1.7 Gpa per 10% Clay

Clay C=0 C=0.1 C=0.2

K(Gpa) G (Gpa) K(Gpa) G (Gpa) K(Gpa) G (Gpa)

400 32.83 29.40 26.16

300 31.91 28.56 25.40

200 30.45 27.29 24.30

100 28.68 25.73 22.94

50 26.46 23.79 21.25

1. For sand with few percent clays, mineral bulk 

modulus is stable around 39 Gpa if differential 

pressure higher than 20 Mpa. 

2. For shaly sand, clay effect on mineral modulus 

can be count as -1.7 GPa per 10% clay increment. 

Those values suggest that mineral bulk modulus is

relatively stable.  Clay plays important role in reducing

shear modulus but has a more moderate effect on bulk 

modulus.  Data also suggest that few percent of other 

minerals may be not important to affects mineral modulus 

for Gassmann' s calculation. However, for rocks with 

complexly mixed minerals as important part of rock frame 

the effective grain modulus is still undetermined.

Conclusions

Gassmann’s equation is consistent with the both Voigt and 

Reuss bounds with the minimum and maximum fluid 

saturation effect on porous rocks. Simplified forms of

Gassmann’s equations provide an easy understanding of the 

influences on pore fluid signatures: dry rock gain function 

Pd (bars) a b a' b' b/a b'/a'

39.0 32.8

39.1 31.9

39.3 30.5

38.7 28.7

38.0 26.5

Pd (bars)

39.03 37.27 35.51

39.08 37.26 35.44

39.27 37.30 35.35

38.74 36.72 34.72

38.04 36.08 34.15
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(G) and fluid modulus (Kf) independently control the fluid 

saturation effect.  We need to better characterize and 

constrain the dry rock properties and use accurate fluid 

properties before we can correct evaluate fluid saturation 

effects.    Measured data suggest that gain function of 

reservoir sands is around 2.   Clays cause an increase of 

gain function.   The correct grain bulk modulus is another 

key for accurate fluid substitution, especially for low 

porosity reservoirs.  Empirical relations suggest that grain 

bulk modulus for clean sandstone is 39 Gpa and decreases 

with clay content by 1.7 GPa per 10% clay content 

increment. 
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