
The effect of pore fluid on the stress-dependent elastic wave velocities in sandstones 
Colin M. Sayers*, Schlumberger, and De-Hua Han, Houston Advanced Research Center 
 
 
Summary 
 
Elastic wave velocities in sandstones vary with stress due 
to the presence of discontinuities such as grain boundaries 
and microcracks within the rock. The effect of any 
discontinuities on the elastic wave velocities can be written 
in terms of a second-rank and fourth-rank tensor that 
quantify the dependence of the elastic wave velocities on 
the orientation distribution and normal and shear 
compliances of the discontinuities. This allows the normal 
and shear compliance of these discontinuities to be 
obtained as a function of stress by inverting measurements 
of P- and S-wave velocities. Inversion of ultrasonic 
velocity measurements on dry and fluid saturated 
sandstones shows that the ratio of the normal to shear 
compliance of the discontinuities is reduced in the presence 
of fluid in the grain boundaries and microcracks. This is 
consistent with the expected reduction in the normal 
compliance of the discontinuities in the presence of a fluid 
with non-zero bulk modulus. 
  
Introduction 
 
Gassmann’s equations (Gassmann, 1951) relate the low 
frequency bulk modulus, Ksat, and shear modulus, µsat, of a 
fluid saturated porous rock to the bulk modulus, Kframe , and 
shear modulus, µframe, of the rock frame without fluid in the 
pores. These equations may be written in the form: 
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Here K0 is the bulk modulus of the solid material making 
up the rock frame, Kfl is the bulk modulus of the fluid, and  
φ is the porosity (see, for example, Mavko et al., 1998). It 
should be noted that the frame moduli, Kframe, and  µframe , 
used to predict the low frequency elastic moduli in fluid 
saturated porous rocks, correspond to the moduli of the 
frame in contact with a small amount of residual fluid. 
Drying the rock in an oven, for exa mple, can alter the 
physical properties of clay and disrupt the surface forces 
acting at the surface of the grains.  
 
In sandstones, the frame moduli, Kframe  and µframe, vary 
strongly with stress due to the presence of discontinuities 
within the rock such as boundaries between sand grains and 
microcracks, as illustrated in Figure 1. Figure 2 shows the 
variation of Ksat/K0 as a function of Kframe/K0, for a 

sandstone having the properties φ=0.2, K0=36 GPa, 
saturated with a fluid having bulk modulus Kfl=2.2 GPa. 
Kframe/K0 is expected to increase with increasing stress due 
to increasing contact between opposing faces of grain 
boundaries and microcracks. Ksat/K0 is seen to increase at a 
lower rate, particularly at low stress. 
 

 
Figure 1 – A region within a sandstone showing the 
discontinuities between sand grains. 
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Figure 2 – Variation of Ksat/K0 as a function of Kframe/K0, 
for a sandstone having the properties φ=0.2, K0=36 GPa, 
saturated with water having bulk modulus Kfl=2.2 GPa. 
 
A further effect of fluid on the stress-dependence of elastic 
wave velocities in sandstones results from the breakdown 
of the low frequency assumption implicit in Gassmann’s 
equations. As frequency increases, viscous effects cause the 
thinnest pores (microcracks and grain boundaries) to 
become isolated with respect to fluid flow (Mavko and 
Jizba, 1991, 1994). Because the pore pressure induced in 
these pores is unable to equilibriate with the pore pressure 
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in the rest of the pore space, the rock frame appears stiffer 
than at lower frequencies. Mavko and Jizba (1991, 1994) 
consider the thin, compliant fraction of the pore space to be 
part of the viscoelastic frame of the rock, and derive 
equations for the high-frequency frame moduli that 
incorporate the stiffening effect of the fluid in the thin, 
compliant fraction of the pore space. These expressions 
may then be substituted into Gassmann’s equations to 
incorporate the remaining fluid saturation effects. At finite 
frequencies, squirt flow occurs between the low aspect ratio 
pores and the rest of the pore space, resulting in a 
frequency dependent frame modulus. Murphy et al. (1984) 
introduced a micromechanical model to describe squirt 
flow at grain boundaries, consisting of the parallel 
combination of the stiffness of the grain contact and the 
stiffness of a fluid-filled gap. The purpose of this paper is 
to invert for the properties of fluid-filled grain boundaries 
and microcracks using P- and S-wave velocity 
measurements as a function of stress. 
 
Theoretical model 
 
It is assumed that the stress dependence of the elastic 
properties of a sandstone is due to deformation of any 
discontinuities within the rock such as microcracks and 
boundaries between sand grains. At high confining stress, 
any discontinuities are assumed to close so that the 
sandstone may be treated as an anisotropic elastic medium 
with elastic stiffness tensor C0

ijkl and elastic compliance 
tensor S0

ijkl. At intermediate stress it  is assumed that any 
discontinuities will be partially open. Because the 
compliance of a discontinuity varies with stress, as more 
and more contacts are made between opposing faces of the 
discontinuity, elastic wave velocities in sedimentary rocks 
are strongly non-linear functions of stress. 
 
Mavko et al. (1995) treat the stress-dependent wave 
velocities in the presence of discontinuities such as cracks 
and compliant grain boundaries by defining a fourth-rank 
compliance tensor for each discontinuity, and by  summing 
the compliance tensors for all discontinuities. In this paper, 
the approach of Sayers and Kachanov (1991, 1995) is used 
in which the variation in elastic wave velocity resulting 
from the deformation of all such discontinuities is 
expressed in terms of a single second-rank and fourth-rank 
tensor. These tensors quantify the effect on the elastic wave 
velocities of the orientation distribution and normal and 
shear compliances of the grain boundaries and microcracks.  
The expressions given allow ultrasonic velocity 
measurements to be inverted to obtain the components of 
these tensors. These components represent the maximum 
information about the orientation distribution of the 
discontinuities that can be determined from elastic wave 
velocity measurements. 
 

Following Sayers and Kachanov (1991, 1995), the elastic 
compliance of the sandstone frame may be written in the 
form 

0

ijkl ijkl ijklS S S= + ∆ ,                                                              (3) 

where the excess compliance ∆Sijkl due to the 
discontinuities can be written as 
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Here, αij is a second-rank tensor and βijkl is a fourth rank 
tensor defined by 
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BN

(r) and BT
(r) are the normal and shear compliance of the 

rth discontinuity, ni
(r) is the ith component of the normal to 

the discontinuity, and A(r) is the area of the discontinuity 
(Sayers and Kachanov, 1991, 1995). BN

(r) characterizes the 
displacement jump normal to the discontinuity produced by 
a normal traction, while BT

(r) characterizes the shear 
displacement jump produced by a shear traction applied at 
the discontinuity. BT

(r) is assumed to be independent of the 
direction of the shear traction within the plane of the 
discontinuity. Note that αij and βijkl are symmetric with 
respect to all rearrangements of the indices so that, for 
example, β1122=β1212, β1133=β1313, etc. If BN=BT for all 
discontinuities, the fourth-rank tensor βijkl vanishes and 
∆Sijkl is completely determined by the second-rank tensor 
αij. 
 
Inversion of ultrasonic velocity measurements 
 
The components αij and βijkl of the second and fourth rank 
tensors introduced above may be obtained from equation 
(3) by inverting elastic stiffnesses obtained from measured 
P- and S-wave velocities. Han (1986) and Han et al. (1986) 
report measurements of P- and S-wave velocities for a large 
number of dry and saturated sandstones as a function of 
applied hydrostatic stress. Because velocity measurements 
were only made in one direction, it is assumed below that 
the samples are isotropic. For isotropic sandstones subject 
to a hydrostatic stress state, it follows from equations (5) 
and (6) that the non-vanishing αij and βijkl  are 

11 22 33α α α α= = = , say                                                (7) 

1111 2222 3333β β β β= = = , say                                         (8) 

1122 1133 2233 1212 1313 2323 / 3β β β β β β β= = = = = =      (9) 
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It then follows from equation (4) that the frame bulk 
modulus, K, and shear modulus, µ, are given in terms of the 
bulk modulus, K0, and shear modulus, µ0, of the frame at 
high confining stress by 
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These equations allow α and β to be determined from 
measurements of the P- and S-wave velocities using the 
relations 
 

Pv ( 4 / 3 ) /K µ ρ= + , Sv /µ ρ= ,                   (11) 
 
where ρ is the density. 
 
Finally, consider a sandstone with an isotropic orientation 
distribution of discontinuities subject to a hydrostatic stress. 
Denoting the average normal and shear compliance by BN 
and BT, it follows from equations (5) and (6) that BN/BT  
=1+5β/3α. This allows BN/BT to be estimated from the ratio 
β/α. 
 
Application to velocity measurements on sandstones 
 
Han (1986) and Han et al. (1986) report measurements of 
P- and S-wave velocities on dry and saturated sandstone 
samples subject to a hydrostatic confining stress of 5, 10, 
20, 30, 40 and 50 MPa. To determine α and β from 
equations (10-11), the bulk modulus, K0, and shear 
modulus, µ0, of the frame at high confining stress were 
estimated from the velocity measurements at the highest 
confining stress for which velocity measurements were 
made. The values of α and β found below therefore 
correspond to changes relative to this reference state of the 
rock. 
 
To illustrate the results, Figure 3 shows the variation of the 
P- and S-wave velocity for one of the dry samples 
measured by Han (1986). It is seen that the velocities 
increase with increasing hydrostatic stress, as grain 
boundaries and microcracks within the rock close with 
increasing stress. Figure 3 also shows the variation of α and 
β versus stress for this rock. It is seen that the microcracks 
and grain boundaries become less compliant as the 
hydrostatic stress increases. This is consistent with the 
expectation that the compliance of the grain boundaries and 
microcracks decreases as the stress increases due to 
increasing contact between opposing faces of these 
discontinuities. It is also seen that, for this rock, α and β are 
of opposite sign. This implies that BN/BT<1 for this rock 
(see equations (5) and (6)). The discontinuities are 
therefore more compliant in shear than in compression, as 
found previously for Penrith sandstone (Sayers, 2002).  

 
 
Figure 3 – Left: Variation of the P- and S-wave velocity 
versus confining stress for one of the dry samples measured 
by Han (1986). Right: Variation of α and β as a function of 
confining stress obtained using equations (10-11). 
 
Figure 4 shows a histogram of BN/BT deduced for the dry 
samples measured by Han et al. (1986). It is seen that for 
most of these samples BN/BT<1. However an appreciable 
number of the samples have values of BN/BT >1. 

 
Figure 4 – Histogram of BN/BT obtained for the dry samples 
of Han (1986). 
 
To determine BN/BT for the fluid saturated samples, it is 
necessary to determine the bulk and shear moduli of the 
frame. The shear modulus of the frame follows directly 
from equation (2), while the bulk modulus of the frame 
may be written as 
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(see, for example, Mavko et al., 1998). 
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Figure 5 shows a histogram of BN/BT  for the saturated 
samples measured by Han (1986) obtained using the wet 
frame moduli calculated for these samples. It is seen that 
the presence of fluid in the grain boundaries and 
microcracks acts to decrease the ratio BN/BT from the 
values in dry sandstones (compare Figures 4 and 5). This 
implies that BN/BT is reduced due to the presence of fluid, 
consistent with the expected reduction in normal 
compliance for fluid-saturated microcracks and grain 
boundaries (Sayers, 1999). It is also seen that the 
distribution of BN/BT for fluid-saturated sandstones is much 
narrower than for dry sandstones (note the change in 
vertical scale between figures 4 and 5). 

 
Figure 5 – Histogram of BN/BT obtained for the saturated 
samples of Han (1986). 
 
Conclusion 
 
A theory of the stress-dependent P- and S-wave velocities 
in dry and fluid-saturated sandstones has been presented 
that takes into account the deformation of discontinuities in 
the rock such as grain boundaries and microcracks. The 
theory is formulated in terms of a second-rank tensor, αij,  
and a fourth-rank tensor, βijkl, which depend on the 
orientation distribution and the normal and shear 
compliance of these discontinuities. The theory allows the 
components of these tensors to be obtained as a function of 
stress from measurements of P- and S-wave velocities. 
Application of the theory to the velocity measurements 
reported by Han (1986) and Han et al. (1986) on dry and 
saturated sandstones, shows that, for saturated samples, α 
and β are of opposite sign. The ratio BN/BT  of the normal to 
shear compliance of the microcracks is therefore less than 
one for saturated sandstones, implying that the grain 
contacts and microcracks are more compliant in shear than 
in compression. For dry samples β/α is larger than for 
fluid-saturated samples. The ratio BN/BT of the normal to 
shear compliance of the microcracks and grain boundaries 
is therefore reduced in the presence of fluid, consistent with 
the expected reduction in normal compliance for fluid-
saturated microcracks and grain boundaries.  
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