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Abstract
The relationship between seismic velocity and porosity is one of the most important research
topics in exploration geophysics. A strong correlation, if it exists, can be very useful for
quantitative seismic interpretation of direct hydrocarbon indicators. The Voigt and Reuss bounds
are often plotted alongside the data for quality control and interpretation. The relative position of
the data within the bounds may supply important information regarding the pore shape, stress
condition, lithology, and diagenesis of porous rocks. It is found that the Voigt bound and Reuss
bound are actually special cases of the weighted power mean, with the power parameters being 1
and −1, respectively. The geometric mean is a special case of the power mean with the power
parameter being zero. The power mean is a monotonic function of the power parameter. For the
construction of a rock physics template, the region between the Voigt and Reuss bounds can be
evenly divided by varying the power parameter between −1 and 1. The power mean can be a
very useful tool for modeling the elastic properties of rocks. We have demonstrated the potential
applications of the power mean in the studies of velocity-porosity relation, effective media, and
pore fluids effect on seismic velocities.
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Introduction

Discovering the relationship between the seismic velocities
and porosity is one of the most important topics in rock
physics studies (Nur et al 1995). The seismic velocities,
which are functions of the elastic properties and bulk density,
are affected by other properties of porous rock, such as the
pore geometry, texture, and heterogeneity of the rocks. The
pore geometry refers to the distribution of pores of various
shapes and dimensions, connectivity, and surface-to-volume
ratio. The pore geometry can have a significant effect on the
seismic velocities of porous rocks (Wang et al 2015). The
seismic velocities are also stress-dependent. Therefore, it is
very difficult to build a theoretical model to describe the
relationship between the seismic velocities and porosity.

Most of the previous works on the velocity-porosity
relationship are based on empirical relations (Wyllie
et al 1956, Raymer et al 1980, Tosaya and Nur 1982,
Han 1986, Xu and White 1995), and other parameters, such as

the mineral content and stress, may be included in the
empirical relation. For a rock with a certain porosity, the
elastic bounds give the possible range of the elastic properties.
It is common practice to plot the bounds with the measure-
ment data to observe the position and trends of the data
relative to the bounds. The relative position may supply
important information regarding the pore shape, diagenesis,
pore fluid type and pressure conditions (Marion and
Nur 1991, Mavko and Mukerji 1995, Fabricius et al 2008,
Yan and Han 2011, Zhao et al 2013). The best-known elastic
bounds are the Voigt (1928) upper bound and the Reuss
(1929) lower bound due to their simplicity in formulation and
theoretical validity. The separation of Hashin–Shtrikman
(1963) bounds is usually much narrower but they take more
complicated forms than the Voigt–Reuss bounds. Nur et al
(1995) brought up the concept of ‘critical porosity’ to modify
the Voigt–Reuss bounds to better confine the data for natural
porous rocks. The Hashin–Shtrikman bounds can also be
modified using ‘critical porosity’ (Fabricius 2003), but some
valid data might fall out of the modified bounds because the
original bounds are already narrow at the low porosity range.
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The region between the bounds is often equally divided in the
y-axis direction to mark the relative position; the divisional
curves are called ‘iso-frame’ curves by Fabricius (2003)
because the rocks located on the iso-frame curve are believed
to have the same induration or hardness.

Nur et al (1995) noticed that there is a mathematical
similarity between the Voigt bound and Reuss bound. In this
study, we further explored the mathematical similarity and
found that the Voigt bound and Reuss bounds are special
forms of the weighted power mean in the terminology of
statistics. They can be represented by a common and simple
formula with a power parameter denoting the relative hard-
ness of a rock. The power mean is the Voigt bound when the
power parameter is 1 and it is the Reuss bound when the
power parameter is −1. The power mean is a monotonic
function of the power parameter. We will demonstrate that the
power mean, with the power parameter varying in the range
from −1 to 1, can be a powerful tool in rock physics
modeling.

The power mean and the bounds

Given a set of values (M1, M2, K, MN), and the corresp-
onding weights (f1, f2, K, fN, and with å == f 1

n

N
n1

), the
weighted power mean (Bullen 2003) can be written as

= + +¼+( ) ( )/M f M f M f M . 1a a
N N

a a
1 1 1 1

1

Here a is the power parameter. In the study of the effective
properties of a rock, the power mean should always be
weighted by the proportions of finite phases or compositions
of the rock. For convenience of reference, we call the
weighted power mean the power mean in this study. A power
mean is also known as a general mean, Hölder mean, or mean
of degree. Some well-known means are special cases of the
general mean when a takes special values. When a takes
values of −1, 0, 1, and 2, the general mean becomes the
harmonic mean, geometric mean, arithmetic mean, and root-
mean-square, respectively. The geometric mean takes a dif-
ferent form from the general mean,

= ¼ =
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The specialization of the geometric mean from the general
mean is not straightforward. It can also be numerically tested
by parameterizing equation (1) with an infinitesimally small
value of a.

The propagation speeds of acoustic waves are determined
by the effective elastic properties and density of the compo-
site rock, which may consist of different minerals and pore
fluids. In studying the effective elastic properties of the rocks,
the M variable in equations (1) and (2) can be bulk modulus
(K), shear modulus (G), P-wave modulus (M), etc. The
weights f are the volume fraction of the constituent phases of
a rock. In such cases, the weighted harmonic mean is actually
the well-known Reuss bound, and the weighted arithmetic
mean is the Voigt bound. This point is self-evident when only

two phases, the solid frame and pore fluid, are considered:

f f= - +(( ) ) ( )/K K K1 , 3wet m
a

f
a a1

where Km and Kf are the bulk modulus of the solid frame and
the pore fluid, respectively, f is the porosity and Kwet is the
effective bulk modulus of the saturated rock. When a is set
equal to −1 or 1, the aforementioned expression becomes the
Reuss bound and the Voigt bound, respectively,

f f= - +- - -( ) ( )K K K1 , 4wet m f
1 1 1

f f= - +( ) ( )K K K1 . 5wet m f

The mathematical similarity between the Voigt bound and
Reuss bound is obvious when the bulk modulus terms are
written in exponential forms as shown in equation (4). When
a goes to 0, equation (3) becomes the geometric mean

= f f- ( )K K K . 6wet m f
1

One important feature of the power mean is that it is a
monotonic function of the power parameter a for a given set
of unequal real numbers, M1, M2, K, MN (Qi et al 2000,
Bullen 2003, Witkowski 2004a, 2004b). In rock physics,
a=−1 and a=1 correspond to the lower Reuss bound and
the upper Voigt bound of the effective elastic properties of a
rock. For real rocks the power parameter a should be
dependent on rock texture, diagenesis and stress history, and
vary within the range of [−1, 1]. It should be an important
parameter to characterize the elastic properties of the rocks.
Rock physics data are often plotted with the Voigt bound and
Reuss bound, or the Hashin–Shtrikman bounds (Hashin and
Shtrikman 1963). Inside the bounds, curves with equal ver-
tical divisions between the bounds are plotted to mark the
relative positions of the data. These curves are called iso-
frame curves by Fabricius (2003); they are a measure of
induration (or hardness) for rocks with a given porosity. We
call these curves iso-fraction curves because they are simply
equal fractional divisions between the bounds. Similar curves
can be built using equation (1) by letting a vary from −1 to 1.
These curves are called iso-power curves.

Figure 1 illustrates the relationship between the rock
properties, the iso-fraction curves, and the iso-power curves.
The rock physics data are from laboratory measurements by
Han (1986), and the color bar denotes the clay content of the
sandstone samples. We decide to use the P-wave modulus
since P-wave velocity is predominately used in seismic data
processing and interpretation, and the two-term power mean
can be written in the form

f f= - +(( ) ) ( )/M M M1 , 7wet m
a

f
a a1wet wet wet

= =f f- ( ) ( )M M M a, 0 . 8wet m f wet
1

Here M refers to the P-wave bulk modulus and awet denotes
the power parameter for fully brine-saturated rock. The iso-
frame curves in figure 1 are based on the elastic moduli of
quartz and water given in table 1. For the region enclosed
between the Voigt bound and Reuss bound, the iso-power
curves are more evenly distributed than the iso-fraction curves
in the direction perpendicular to the long axis of the bounded
area. Some of the iso-fraction curves are packed together in
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the lower porosity part. This feature is also obvious when the
Hashin–Shtrikman bounds and critical porosity are used to
construct the iso-fraction curves, as can be seen from figure 2
by Fabricius (2003). The trending of the iso-power curves is
generally more congruous with the data trend, especially
when rocks with different lithology are considered separately.
Apart from the simplicity of their mathematical form, the
power means with a=−1, 0, 1 also have distinct physical
meaning relating to the strain-stress distribution of the com-
posite material (Mainprice and Humbert 1994). Therefore, the
power mean with power parameters in the range [−1, 1] may
be more suitable for building rock physics templates and for
modeling the elastic properties of porous rocks, and the power
parameter or iso-power curves are better indications of the
rock hardness than the iso-fraction curves.

Modeling the velocity-porosity relationship

Finding the relationship between porosity and seismic wave
velocities in porous rocks has been an important area of
research for decades. Wyllie et al (1956, 1958) revealed that a
simple relation exists between the velocity and porosity in
sedimentary rocks when the fluid-saturated rocks have uni-
form mineralogy and are at high effective pressure. This

relation can be expressed in the form

f f
=

-
+ ( )

V V V

1 1
, 9

P Pm Pf

where VP, VPm and VPf are the P-wave velocities of the
saturated rocks, of the mineral matrix, and of the pore fluid,
respectively. For sandstones, VPm should be in the range from
5.48 to 5.95 km s−1 (Mavko et al 1998). Raymer et al (1980)
suggested improvements to Wyllie’s empirical velocity-por-
osity relation as follows:

f f f= - + <( ) ( )V V V1 , 37%, 10P Pm Pf
2

Figure 1. Comparison of the iso-fraction curves and iso-power
curves with Han’s data (Han 1986). −1:0.2:1 denotes that the value
increases from −1 to 1 by steps of 0.2.

Table 1. Mineral elastic moduli and density used in this study
(Referred to Mavko et al 1998).

Quartz Calcite Clay Dolomite Water

K (GPa) 37 75 25 78 2.3
G (GPa) 44 30 9 48 0
ρm (g cc-1) 2.65 2.71 2.65 2.87 1.02

Figure 2. Comparing velocity-porosity models by the Raymer–
Hunt–Gardner relation and the geometric mean. The sandstone data
measured at 50 MPa by Han (1986) are used. Only samples with clay
content less than 10% are used. (a) The lowest value of VPm

suggested by Mavko et al (1998) for sandstone is used; (b) the
highest value of VPm for sandstone is used.
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where VP, VPm and VPf are the P-wave velocities of the
saturated rocks, of the mineral matrix, and of the pore fluid,
respectively. The terms ρ, ρm and ρf are the densities of the
saturated rocks, of the mineral matrix, and of the pore fluid,
respectively. Here 37% is the critical porosity, above which
the elastic properties are estimated by the Reuss bound.
Equations (10) and (11) are called the Raymer–Hunt–Gardner
relation and it is applied in the industry to estimate the por-
osity from measurements of seismic velocities and knowledge
of the rock type and pore fluid content (Mavko et al 1998).

A velocity-porosity model can be directly derived from
the power mean or geometric mean. From the geometric mean
(equation (8)), we have

r r r f= <f f-( ) ( ) ( )V V V , 37%, 12P m Pm f Pf
2 2 1 2

where the notations have same meanings as those in
equations (10) and (11).

Using Han’s data (1986), figure 2 shows a comparison of
the Raymer–Hunt–Gardner model and the geometric mean in
modeling the velocity-porosity relationship. In consideration
of the assumption of uniform lithology and high effective
pressure, only data points with a clay content less than 10%
and measured at a differential pressure of 50 MPa are inclu-
ded. When a low value of 5.48 km s−1 is used for the mineral
P-wave velocity, the velocity-porosity model by the geo-
metric mean (equation (12) fit the data much better than the
Raymer–Hunt–Gardner relation does. Relative to the mea-
sured P-wave velocity, the root mean square error (RMSE) is
0.547 km s−1 for the Raymer–Hunt–Gardner relation and the
RMSE is 0.107 km s−1 for the model by the geometric mean.
When a high value of 5.95 km s−1 is used for the mineral
P-wave velocity, neither model fits the measured velocity-
porosity trend very well. The RMSE is 0.299 km s−1 for the
Raymer–Hunt–Gardner relation, and it is 0.300 km s−1 for the
model by equation (12). When the Raymer–Hunt–Gardner
model is used, the data points are separated into two trends at
4.75 km s−1 and it cannot fit the measured velocity regardless
of whether a high or low VPm is used. Therefore, the velocity-
porosity model using the geometric mean can be an
improvement over the Raymer–Hunt–Gardner relation.

For some reservoirs, the variation of VPm may not be
sufficient to describe the velocity-porosity relationship. In
such a case, we may try using the velocity-porosity relation
derived from the general mean in the form of equation (7),
and that is,

r f r f r= - + -(( )( ) ( ) ) ( )/V V V1 1 , 13P m Pm
a

f Pf
a a2 2 2 1

where a is the power parameter in a range of [−1, 1], and the
other notations have same meanings as those in
equations (10) and (11). To model the effect of an individual
mineral phase on the P-wave velocity, such as the clay
mineral, a multiple-term power mean can be used to construct
a velocity-porosity model similar to equation (13).

Effective media and weighted geometric mean

In the rock physics study, such as Gassmann fluid substitution
(Gassmann 1951), a regular task is to estimate the effective
elastic moduli of the mineral matrix. Knowing the con-
centration of the mineral phases, the effective elastic moduli
of the mineral matrix are primarily controlled by the texture of
the rocks. It is difficult to definitely determine the effective
elastic moduli because the texture is a qualitative description
of the rock. Two procedures are often used to approximate the
effective elastic moduli of the mineral matrix: Voigt–Reuss–
Hill (V–R–H) average and Hashin–Shtrikman (H–S) average
(Smith et al 2003). The Voigt bound and Reuss bound are the
power means with power parameter equals to 1 and −1,
respectively. The weighted geometric mean is a power mean
with power parameter of 0 and the power mean is a mono-
tonic function of the power parameter. It is natural to consider
that the weighted geometric mean may be a good option to
approximate the elastic moduli of the mineral matrix. Using
elastic properties of calcite and clay as shown in table 1,
figure 3 illustrates the differences in estimating the bulk
modulus of the mineral matrix. For the mineral mixture of
calcite and clay, the difference between the V–R–H average
and the weighted geometric mean is small. When the con-
centration of the softer phase, the clay, is low, the geometric
mean is slightly higher than the V–R–H average; when the
concentration of the softer phase is high, the geometric mean
is slightly lower than the V–R–H average. The maximum
difference is 0.86 GPa, which may be not important for
common applications. The H–S average is lower than both the
V–R–H average and the geometric mean. The maximum
difference between the H–S average and the geometric mean
is 2.28 GPa for the mixture of calcite and clay. Selection of
the optimum averaging scheme depends on the diagenesis of
rock under study. Among the three average schemes, the
geometric mean has the most simple and neat form.

Figure 3. Comparison of V–R–H average, H–S average and
weighted geometric mean in modeling the effective bulk modulus of
the solid rock frame. The bulk modulus of the two mineral phases
are 75 and 25 GPa, respectively.
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Figure 4 shows the results of using the weighted geo-
metric mean to estimate the effective bulk modulus of satu-
rated sandstones. The data come from laboratory ultrasonic
measurements by Han (1986). The 69 sandstone samples
come from different places all over the world. Only data
measured at a differential pressure of 50 MPa are shown. The
effective bulk moduli estimated by the weighted geometric
mean are slightly out of trend with the measured bulk moduli.
For sandstones with lower bulk modulus, the estimation of the
geometric mean is higher than the measurement; for sand-
stones with higher bulk modulus, the estimation of the geo-
metric mean is lower than the measurement. Therefore, the
power mean with a=0 is not sufficient to characterize the
properties of general reservoir rocks. We need to characterize
the power parameter a for different rocks and for rocks
saturated with different pore fluids.

The power parameter for dry and saturated rocks

From equation (7), if the rocks are dry, the P-wave modulus
of pore fluids is zero. The power parameter a should be
positive and in the range of (0, 1] for dry rocks because the
negative power of zero is not rational. We drop the term with
Mf in equation (7) and the effective P-wave modulus esti-
mated by the power mean is in the form

f= -(( ) ) ( )/M M1 , 14dry m
a a1dry dry

where the subscript ‘dry’ refers to dry rocks. If we have
P-wave velocity measurement on dry rocks, then the power

parameter adry for dry rocks can be calculated by

f
=

-
-

( ) ( )a
M M

ln 1

ln ln
. 15dry

dry m

If we have the P-wave velocity measurement on saturated
rocks, awet can be inverted from equation (7) because it is the
sole unknown variable. The relation between adry and awet can
be set up if P-wave velocity measurements are made on rock
samples under both dry and saturated conditions.

Figure 5 shows the correlation of awet with adry and
porosity for sandstones. The sandstone data are from Han
(1986), and they include measurements at different pressure
conditions. The sandstone samples are collected all over the
world. Some of them are clean and consolidated, such as the
Berea sandstone, Fontainebleau sandstone; and some are less
consolidated and have more clay content, such as those from
the Gulf of Mexico. The porosity of the samples varies from
4% to 31%, and the clay content varies from 0% to 51%. In
spite of the variety of the sandstone samples, the power
parameters for fully brine-saturated sandstones are well cor-
related with the power parameters for the dry sandstones. This
empirical relation may be applied to predict the saturation
effect on P-wave velocity. From P-wave velocity measure-
ments on dry rocks, adry can be estimated using equation (13).
Using the empirical relation shown in figure 5,

f= - + - ( )a a0.510 2.523 0.772 , 16wet dry

where the power parameter awet for saturated rocks can be
estimated. Using equation (16), we can then predict the
saturation effect on P-wave modulus. Figure 6 shows the
prediction of the saturation effect on P-wave velocity for
sandstone. The prediction results are compared to those from
the commonly used Gassmann equations (Gassmann 1951),

f-
=

-
+

-( )
( )K

K K

K

K K

K

K K
, 17wet

m wet

dry

m dry

f

m f

= ( )G G , 18wet dry

where G refers to the shear modulus. Here the prediction of

Figure 4. Estimation of the effective bulk modulus of saturated
sandstones using weighted geometric mean. The laboratory ultra-
sonic measurement data are from Han (1986). Only data points
measured at a differential pressure of 50 MPa are shown.

Figure 5. Correlation between the power parameter awet for fully
brine-saturated rocks and adry for dry rocks.
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the saturation effect using the empirical relation is not a
prediction in a strict sense because the same data for gen-
erating the empirical relation are used, but it still can
demonstrate the potential utility of this methodology as a tool
to study the saturation effect of pore fluids on seismic velo-
cities. Figure 6 shows the prediction of the saturation effect
on P-wave velocity for sandstone using the empirical model
by equation (16) and the Gassmann equation, respectively.
The root mean square error (RMSE) for the empirical model
is 0.08 km s−1, and the root mean square error for the Gass-
mann equation is 0.21 km s−1. One advantage of the approach
of fluid substitution using the empirical relation and the power
mean is that shear velocity information is not needed. The
greater prediction errors for the Gassmann equation are pri-
marily caused by dispersion at low pressures when most of
the cracks are open (Yan et al 2014). It does not necessarily
mean that the Gassmann equation is a worse model. For a
certain reservoir, if we have plenty of laboratory measure-
ments on core plugs, a specified empirical relation similar to
equation (16) can be set up to predict the fluid saturation
effect, and its performance could be better than that of the
Gassmann equation.

Figure 7 shows the correlation of awet with adry and
porosity for carbonate rocks. The carbonate rock data sets are
from Rafavich et al (1984), Assefa et al (2003), Verwer et al
(2008), and Fabricius et al (2008). The carbonate rocks
include limestone, dolomite, and chalk. The porosity of the
carbonate rocks varies from 0.04 to 0.55. Compared to the
sandstone dataset from Han (1986), the power parameter of
the brine-saturated carbonates has a wider distribution. The
empirical relations for sandstone and carbonates are similar,
and the primary difference comes from the coefficient in the
porosity term. The pore geometry of the carbonate rocks
might be more complicated because of biogenic and chemical

factors. Figure 8 shows the prediction of the saturation effect
on P-wave velocity for carbonate rocks using the empirical
relations and the Gassmann equation, respectively. The root
mean square error (RMSE) for the empirical model is
0.17 km s−1 and the root mean square error for the Gassmann
equation is 0.19 km s−1. The results are similar. From
figures 6 and 8, the saturation effect on P-wave velocities is
more complicated for carbonate rocks than sandstone. The
measured P-wave velocities are usually higher than those
predicted by the Gassmann theory for sandstone, which is
theoretically correct because the P-wave velocity predicted by
the Gassmann theory is the lower bound. For carbonate rocks,
it is not rare to see that the measured P-wave velocity is lower
than that predicted by the Gassmann theory. This phenom-
enon cannot be explained by elastic theory. It might be caused

Figure 6. Prediction of the saturation effect on P-wave velocity of
sandstone using the empirical model and the Gassmann equation.
Han’s data (Han 1986) are used. The RMSE for the empirical model
and the Gassmann equation are 0.08 km s−1 and 0.21 km s−1,
respectively.

Figure 7. Correlation between the power parameter awet for fully
brine-saturated carbonate rocks and adry for dry carbonate rocks.

Figure 8. Prediction of the saturation effect on P-wave velocity of
carbonate rocks using the empirical model in figure 7 and the
Gassmann equation. The RMSE for the empirical model and
Gassmann equation are 0.17 km s−1 and 0.19 km s−1, respectively.
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by the chemical reaction between the water and the solid
frame.

The power parameter for partially saturated
reservoir rocks

From the previous study, the power parameter a for the dry
rock is in the range (0, 1] and it is in the range [−1, 1] for
fully saturated rocks. It is rational to believe that the power
parameter will change with pore fluids. If the power para-
meter for the fully brine-saturated rocks is known, it may be
useful to know how the power parameter will change when
part of the brine is replaced by oil or gas. This information
may be acquired by a large amount of laboratory measure-
ments on partially saturated rocks although it is quite time-
consuming and expensive. We did not make the measure-
ments and no such data are available. Instead, the study is
based on regular laboratory ultrasonic measurements on fully
saturated rocks, and then the Gassmann equation in the fol-
lowing form is used to predict the elastic properties of par-
tially saturated rocks:

f

f

-
-

-

=
-

-
-

( )

( )
( )

K

K K

K

K K
K

K K

K

K K
, 19

wet

m wet

w

m w

wetp

m wetp

fp

m fp

where the subscript ‘p’ denotes properties related to partial
saturation and Kw is the bulk modulus of the brine. The shear
modulus is assumed to be independent of pore fluids. Finally,
equation (7) is used to invert the power parameter for partially
saturated rocks, which is denoted as awetp.

Figure 9 shows the cross plots between the power para-
meter awet for fully saturated sandstones and the power
parameter awetp for the same set of sandstone samples that are

partially saturated. The ultrasonic measurements on fully
saturated sandstones are from Han (1986). No matter how
much pore space is replaced by other pore fluids, the power
parameter for partially saturated rocks is well correlated to the
power parameter for fully saturated rocks, and the correlation
is stronger when the difference in bulk modulus of the pore
fluids is smaller. Based on data shown in figure 9, a regression
relation between the power parameter for partially saturated
rocks and the power parameter for fully saturated rocks is
given by

= -

+ +
⎛
⎝⎜

⎞
⎠⎟ ( )

a
K

K

K

K
a

0.275 0.276

0.334 0.648 . 20

wetp
fp

w

fp

w
wet4

The regression coefficient R2 for the above formula is
0.998, and the root mean square error is 0.007. Most of the
scattering occurs when the brine is completely replaced by
gas or vacuum. In the subsurface conditions, a complete fluid
replacement can rarely happen because of the connate water
and complicated pore geometry (Yan and Han 2016). For a
certain porous rock, the change in the elastic properties due to
different pore fluids can be represented by variation of the
power parameter. Therefore, it is possible to design a fluid
substitution scheme based on the empirical relation similar to
equation (20).

P-wave modulus fluid substitution

A practical problem which often arises in the application of
fluid substitution is that we wish to estimate the change of VP

but the shear velocity is usually unknown in situ (Mavko
et al 1995). To get around this problem, Mavko et al (1995)
developed an approximate method of fluid substitution. The
approximate formula is in the same form as the Gassmann
equation except that the P-wave moduli are replaced by bulk
moduli:

f
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M M
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M M

M
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, 21
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m wet
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wetp

m wetp
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m fp

The P-wave modulus equals the bulk modulus for most fluids
with negligible shear modulus.

P-wave modulus fluid substitution can also be realized by
the power mean. If awet for fully brine-saturated rocks is
known, the regression formula in equation (20) and the power
mean can be used for empirical fluid substitution. The P-wave
velocity change due to fluid replacement is determined from
the variation of the power parameter of the power mean. The
variation of the power parameter is described by
equation (20). Using Han’s data (Han 1986), figure 10 shows
a comparison of these two fluid substitution methods when
the bulk modulus of the pore fluid changes from 2.3 GPa to
0.09 GPa and from 2.3 GPa to 1.16 GPa, respectively. The

Figure 9. Variation of the power parameter when part of the brine is
replaced by other pore fluid. Han’s data (1986) and the Gassmann
equation are used to produce the synthetic data of the power
parameter. The gray surface shows the fitting of the synthetic data.
The data points turn gray in color when they are under the gray
surface.
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pore fluid changes simulate the brine of a subsurface reservoir
rock being replaced by gas and oil, respectively, with only
connate water left. The average saturation effect on P-wave
velocity for all the data points due to gas replacing brine is
0.094 km s−1, and it is 0.053 km s−1 for the case of oil
replacing brine. If the saturation effect predicted by the
Gassmann equation is used as a standard, the RMSEs of the
saturation effects on P-wave velocity predicted by the method
proposed by Mavko et al (1995) are 0.083 km s−1 and 0.041
when the brine is replaced by gas and oil, respectively. The
prediction error is very close to the saturation effect itself.
Using the P-wave modulus fluid substitution with power
mean, the prediction errors can be much lower than the
saturation effect. The method of P-wave modulus fluid sub-
stitution with power mean has the potential to improve the
results of saturation effect prediction if local calibration data

are available. However, the method proposed by Mavko et al
(1995) is still a robust and practical method because it does
not need local calibration and the uncertainty in determining
the seismic velocity is usually greater than the prediction
error.

Discussions

The power mean has a neat form and the power parameter is
the most critical variable. In its application to rock physics
studies, the power mean has definite physical meaning when
the power parameter takes values of −1 or 1. Since the power
parameter −1 denotes the iso-stress state and the power
parameter 1 denotes the iso-strain state, the power parameter
varying from −1 to 1 can be interpreted as the gradual evo-
loution of the stress state of a rock from the iso-stress state to
the iso-strain state during formation and diagenesis of the
rock. The exploration of the physical significance of the
properties of a rock being well described by the geometric
mean may be deserving of further effort. The power mean
with other power parameter values should be treated as a
phenomenological model, not a theoretical model. The power
mean of P-wave moduli in the form of equation (7) is a
convenient treatment in consideration of practical applica-
tions, and it cannot be derived from the power mean of bulk
moduli and the power mean of shear moduli. It is preferable
that the empirical relations brought up in this study are cali-
brated to local reservoirs before applications. The potential
applications in rock physics of the power mean should not be
limited to what we have demonstrated in this study. For
example, the porosity of deep crust rocks is usually negli-
gible, and the power mean can be a convenient and effective
tool to model the relationship between the mineral composi-
tions and seismic velocities.

Conclusions

In the terminology of statistics, the Voigt bound and the
Reuss bound are special cases of the weighted power mean
with the power parameter being 1 and −1, respectively. The
power mean becomes the geometric mean when the power
parameter is 0. With its neat form and flexibility, the power
mean can be a very useful tool for modeling the elastic
properties of rocks. We have demonstrated the potential
applications of the power mean in studies of the velocity-
porosity relationship, effective media, and the saturation
effect of pore fluids on seismic velocities.
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