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Summary 

 

In this study, we provide a solution to well clustering by 

using unsupervised algorithm to recognize patterns in the 

model-based features. Combining the model-driven feature 

and data-driven clustering method delivers us robust results 

of well classification based on overpressure mechanisms. 

Four types of well are labeled, corresponding to four pore 

pressure scenarios: normal compaction or disequilibrium 

compaction, fluid expansion, fluid loss, and a mixture of 

fluid expansion and loss. The developed procedures assist 

people to rapidly determine which empirical relations to use 

while performing pore pressure prediction based on the 

neighboring well. The clustering results also provide an idea 

for the lateral variation in a basin. 

 

Introduction 
 

Overpressure widely exists from the active plate boundaries 

to passive basins, which has been extensively studied to 

prevent from geohazards (Swarbrick and Osborne, 1998; 

Chatterjee et al., 2011) and acquire the status of pore fluids 

presence, accumulation, and migration (Bruce, 1984; Hao et 

al., 2007). It tends to happen once the pore fluid pathways to 

the surface, e.g. sea bottom for offshore or water table for 

onshore, were cut off so that the interstitial fluid could not 

escape to restore the hydrostatic pressure.  

 

Overpressure can occur in shales in the process of 

mechanical compaction, expansion of pore fluids from 

physical or chemical changes, or both (Swarbrick and 

Osborne, 1998; Dutta, 2002; Mukerji et al., 2002). Some 

common mechanisms include disequilibrium compaction or 

undercompaction, kerogen-to-gas, smectite-to-illite or clay 

diagenesis, aquathermal expansion, tectonic uplift or erosion, 

hydrocarbon buoyancy, and vertical or lateral transfer. These 

mechanisms can have different geophysical signatures 

(Bowers, 2001; Katahara, 2003; Ramdhan and Goulty, 2011; 

Qin and Han, 2016) and these features may be utilized to 

establish various empirical relations to predict pore pressure 

(Eaton, 1975; Dutta, 1986; Bowers, 1995; Lahann et al., 

2001). Therefore, to perform reliable pore pressure 

prediction, we need to understand the mechanisms of 

overpressure in a region and their effects on physical 

properties of sedimentary rocks and thus geophysical 

measurements.  

 

We first select features that can serve as the evaluation 

criterion for unsupervised learning. Then we extract features 

from each well based on previous experience or our model-

mind. Next, we use the K-means clustering, an unsupervised 

clustering algorithm, to assess the extracted features and 

label all eligible wells into four classes. At last, we show the 

well data from each cluster to analyze and interpret the data 

trend within a single well. 

 

Study Area and Data 

 

Our study area is located in the northern Gulf of Mexico 

(GoM), where overpressure exists in a wide range and can 

be caused by two major mechanisms, such as disequilibrium 

compaction and smectite-to-illite (Verm et al., 1998). 

Disequilibrium compaction takes place in young sediments 

with fast sediment rate, and smectite-to-illite (Lahann et al., 

2001; Katahara, 2003; Lahann and Swarbrick, 2011, Yu and 

Hilterman, 2014) happens in smectite-rich shale when 

formation temperature is above 70 °C. During the smectite-

to illite, an internal increase of pore pressure can be quickly 

built up within a narrow thickness window (several hundred 

meters). And the smectite-to-illite transition zone (TRZ) 

onset depth ranges from 2400 to 3000 m in GoM. 

 

We utilize wireline logging data from 797 wells from the 

shelf of GoM, offshore Louisiana. The data sets have deleted 

hydrocarbon zones and defined sandstone as sediments with 

a shale volume less than 50% and shale with a shale volume 

larger than 50%. The logging data is averaged on 60 m (200 

ft) intervals, including P-wave velocity, resistivity, and 

density for sand and shale lithology, to filter out high-

frequency fluctuations in rock properties that obscure the 

overall pattern; mud weights, temperature, and overpressure 

onsets are read from the logging run. With the upscaled data 

of water-saturated shale formations, it is convenient for us to 

study the compaction trend in this area.  

 

Methodology 

 

Step I: Feature Selection  
Analysis with the crossplot of sonic velocity or travel time 

(DT) against density (Bowers, 2001; Lahann et al., 2001; 

Hoesni, 2004; Katahara, 2006; Swarbrick, 2012; Tingay et 

al., 2013; John et al., 2014) is a valid way to discern 

overpressure mechanism in shale even if pore pressure or 

effective stress data is not available. With the DT (slowness 

or inverse of sonic velocity) and density data under a 

normally pressured condition, a loading curve or normal 

compaction trend can be defined and fitted as a line in DT-

density domain (Katahara, 2006). 

 

If disequilibrium compaction occurs, a mild build-up of 

overpressure has the effect of slowing the increase rate of 

velocity and density, while rapid build-up of overpressure 

can expect reversals of velocity and density. But the data 
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Well Clustering for Overpressure Mechanisms 

points affected by disequilibrium compaction remains on or 

near the normal compaction trend (Figure 1a). 

 

Qin and Han (2016) categorized two trends of smectite-to-

illite transition with logging data from offshore Louisiana. 

During the transition, smectite releases interlayer bound 

water and reacts with potassium ion to form illite. If the 

released bulk water is preserved in the rock pore system, it 

can be seen as a process of fluid expansion (Figure 1bFigure 

3), which causes more DT increase (a reversal in sonic 

velocity) and little density change as well as relatively high 

pressure. If the released water can escape, it can be seen as a 

process of fluid loss (Figure 1c); density increases and DT 

changes little while overpressure is relatively small. Solid 

arrows in Figure 1 denote the end-member cases of fluid 

expansion and fluid loss. However, there might be data trend 

in a well corresponding to a case when a part of released 

water escapes and another part is preserved.  So the dashed 

arrows represent some other possible signatures of velocity 

and density in a mixed case of fluid expansion and fluid loss. 

Further loading of transformed clay or illite-rich shale will 

move along a trend (light blue line in Figure 1) subparallel 

to the original loading curve (smectite-rich shale, dark blue 

line in Figure 1). 

 

 
Figure 1. Sketches of data trends in the crossplot of DT (sonic travel 
time) and density for a) normal compaction (NC) or disequilibrium 

compaction (DC), b) fluid expansion during smectite-to-illite, and c) 

fluid loss during smectite-to-illite.  

 

Hence, to cluster well based on their overpressure 

mechanism, it is significant to grab the data trend shape in 

entire depth column and data especially in TRZ. It is 

noteworthy to ask questions include: whether there are two 

loading curves in shallow and deeper depth, whether there 

exist a TRZ between the two loading curve and what its data 

trend.  

 

Step II: Feature Extraction 

With above analysis, we propose to automatically fit linear 

lines to the trends and extract the incline angles of lines as 

features. The incline angle represents the direction of a trend. 

However, because the ranges of DT and density values are 

different, we rescale DT to density (kg/m3) with a linear 

transform, so that the incline angles corresponding to the 

fitting lines’ slopes can range from 0 to 180°. After we 

rescale DT trend, the vertical trend, e.g. pure fluid loss, has 

an angle close to 90° in DT-density domain and horizontal 

trend, e.g. pure fluid expansion, has an incline angle close to 

0°. The trends of smectite-to-illite can be modeled by three 

sequential lines with the second line lying in the transition 

zone and the first and third lines characterizing data trend in 

shallow and deep sections respectively and approximately 

paralleling with each other. The challenge is to identify the 

appropriate set of data points that correspond to the 

transition zone, which can vary from one well to another.  

 

To successfully identify the depths corresponding to the 

transition zone of each well, we explore different depth 

ranges for each well, and select the best depth range that 

leads to the best R2 fitting score. The onset depth range starts 

from 2400 to 3000 m with a depth interval varying from 500 

to 700 m. To avoid the second line (in the TRZ) deprecated 

to be aligned with the first line before reaching the transition 

zone, we first limit the incline angle of second line to the 

ranges of [0°,115°] and [165°, 180°], where the angle of first 

line seldom fall in this range. If all angles of second lines 

during the test do not fall in the limited range, then limitation 

is relaxed and second line will have an angle within [115°, 

165°], nearly aligned with the first line. The flowchart of 

feature extraction for line 2 is shown in Figure 2. Linear 

regression is a regression function with DT as X, Density as 

Y and it returns the incline angle of the fitted linear line as 

angle and R2 fitting score as score. 

 

 
Figure 2. Flow chart for incline angle calculation for the transition 
zone with varying depth range. 

 

Step III: Unsupervised Clustering 

We propose to use an unsupervised clustering algorithm to 

help the interpreters in an objective, efficient, and robust 

way. We use the three inclining angles of the auto-fitted 

linear lines as input features for each well and use an 

unsupervised clustering algorithm: K-means (Arthur and 

Vassilvitskii, 2007) to cluster the wells into similar groups. 

K-means is a popular clustering algorithm that runs in an 

iterative way. The number of clusters is pre-determined and 

the centers of clusters are randomly initialized. At each 

iteration, each well is assigned to the nearest center based on 

the three angles and then the center is updated accordingly 

by taking the average of all assigned wells. Then the wells 

a) b) c) 
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are reassigned to the updated centers. The iteration continues 

until the centers do not move or a preset number of iteration 

is reached. 

 

Results and Analysis 

 

The well clustering result is shown in Figure 3. The vertical 

axis is the well index of 90 eligible wells. The horizontal axis 

represents the incline angles of 3 linear regressions 

describing data trend in shallow, TRZ, and deep depth of 

each well. The incline angle is color-coded. 

 

 
Figure 3. Well clustering result. 90 wells are classified into four 
groups, Degree 1, 2, and 3 represent the incline angles of 3 linear 

regressions for DT (rescaled to density range) and density data at 

shallow, middle, and deep depth range. The middle depth range 
corresponds to TRZ, which is not fixed, and we seek the best fitting 

result from a series of TRZ onset depth (from 2400 to 3000 m) and 

TRZ thickness (from 500 to 700 m). 

 

From the clustering result, we can observe that the incline 

angles of the first and third linear regression are close and 

larger than 110°, consistent with the data trend of 

compaction that DT decrease and density increase. The 

second linear regression for possible transition zone plays a 

key role in distinguishing wells to different clusters. Four 

clusters can be clearly observed in Figure 3. From top to 

bottom, the first cluster has an incline angle of TRZ smaller 

than shallow and deep sections but larger than 90°, 

suggesting fluid loss is the common signature among these 

wells. Due to the rescaling effect of DT to density, their 

incline angles are not completely vertical. The second cluster 

has an incline angle of TRZ close to the horizontal direction, 

reflecting fluid expansion is the phenomenon behind this 

group. The incline angles of TRZ in the third cluster are 

similar to the incline angles of their shallow and deep 

sections, indicating disequilibrium compaction or normal 

compaction occurs in this group. For the last cluster at the 

bottom, the incline angles of TRZ range from 50 to 90°, 

implying that a mixture of fluid expansion and fluid loss 

exist in TRZ. Below we present some examples for each 

cluster. 

 

In Figure 4, we plot two examples of the first cluster labeled 

with 0. Well log data and three linear regressions for shallow, 

TRZ, and deep sections are shown in the domain of density 

and rescaled DT. Depth in meters is color-coded. Each R2 of 

linear regressions is also listed. Their TRZs are determined 

at 2600 to 3100 m and 2400 to 2900 m, respectively. The DT 

and density data define two subparallel compaction trends at 

shallow (< 2600 m) and deep (deeper than their transition 

zone) sections. The incline angles of their TRZs are a little 

larger than 90° but smaller than their defined compaction 

trends’ incline angles. We interpret these characteristics with 

the occurrence of smectite-to-illite transition with fluid loss. 

 

  
Figure 4. The example wells of the first cluster labeled with 0, 
corresponding to a major overpressure mechanism as smectite-to-

illite fluid loss. 

 

In Figure 5, we plot two examples of the second cluster 

labeled with 1. Their TRZ are determined at 2600 to 3100 m 

and 2500 to 3000 m, respectively. The incline angles of their 

TRZs are smaller than their defined compaction trends’ 

incline angles and a little larger than 90°. We interpret these 

characteristics with the occurrence of smectite-to-illite 

transition with expansion. 

 

 

 
Figure 5. The example wells of the second cluster labeled with 1, 
corresponding to a major overpressure mechanism as smectite-to-

illite fluid expansion. 

b) a) 

a) b) 
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In Figure 6, we plot two examples of the third cluster labeled 

with 2. Their TRZ are both determined at 2600 to 3200 m. 

However, the incline angles of their TRZs are almost the 

same as their compaction trends’ incline angles. Therefore, 

for this group, smectite-to-illite should be not the major 

mechanism. They have a signature of disequilibrium 

compaction or normal compaction. Further operations can 

distinguish whether shales in these wells are in normal 

compaction or disequilibrium compaction. If shale data is 

concentrated on the DT-density crossplot with increasing 

depth, disequilibrium compaction takes place at the 

concentrated data’s depth.  

 

 
Figure 6. The example wells of the third cluster labeled with 2, 

corresponding to a major overpressure mechanism as disequilibrium 
compaction or normal compaction. 

 

In Figure 7, we plot two examples of the fourth cluster 

labeled with 3. Their TRZ are determined at 2800 to 3400 m 

and 2800 to 3500 m, respectively. The incline angles of their 

TRZs are in the range of 50° to 90° and between the incline 

angles of fluid expansion and fluid loss. We interpret these 

characteristics as a result of a mixture of fluid expansion and 

fluid loss.  

 

 

 
Figure 7. The example wells of the fourth cluster labeled with 3, 
corresponding to a major overpressure mechanism as a mixture of 

fluid expansion and loss. 

 

Discussions 

 

Although the study area contains 2 major overpressure 

mechanisms, disequilibrium compaction and smectite-to-

illite (Verm et al., 1998; Yu and Hilterman, 2014), 4 clusters 

of wells can be obtained based on the proposed method. 

Smectite-to-illite zone have different data trends in TRZ, 

resulted from fluid expansion, fluid loss, and a mixture of 

them. This is consistent with Bruce (1984), which suggested 

that water expelled from smectite during the process of 

smectite-to-illite might migrate out of the host rock early or 

might be totally or partially trapped and released gradually 

during the geological time. Therefore, transferred water 

distribution during smectite-to-illite might be the first-order 

factor controlling the rock properties and the concomitant 

overpressure. 

 

Some technical details can be improved. For instance, the 

linear regression base on L-2 norm has its limitation to fit the 

trending line at the assigned depth range, because it gives all 

the point (data and outliers) the same weight when deriving 

a model. Moreover, we should be careful when rescaling 

sonic travel time (DT) to density, because the calculation of 

incline angles from slopes of fitting lines may affect the 

clustering result. Last but not the least, data depth is another 

important parameter, and further work can include depth 

while extracting features from each well. 

 

Machine learning algorithms perform well in pattern 

recognition in high-dimensional data, which should be an 

effective tool in geology and geophysics field. However, 

machines do not know which feature can be utilized for a 

specific question. Feature selection with previous experience 

or a model mind in certain targets facilitates a robust and 

interpretable learning project. 

 

Conclusions 

 

Two major overpressure mechanisms, disequilibrium 

compaction and smectite-to-illite, exists in the study area. 

Four clusters of wells are concluded based on their DT-

density data trends, corresponding to 1) disequilibrium 

compaction or normal compaction, 2) fluid expansion, 3) 

fluid loss, and 4) a mixture of fluid expansion and loss within 

smectite-to-illite transition zone. The data trend within the 

depth range of possible transition zone (2500 to 3500 m) 

plays a key role in pattern recognition of overpressure 

mechanism and well clustering. 

 

Acknowledgements 

 

The authors would like to thank Fluids/DHI consortium for 

finical support. We express our gratitude to Dr. Fred 

Hilterman and Geokinetics for the use of their well-log 

library.

 

a) 

a) b) 

b) 

© 2017 SEG 
SEG International Exposition and 87th Annual Meeting

Page 3703

D
ow

nl
oa

de
d 

09
/2

7/
17

 to
 1

29
.7

.1
06

.6
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://library.seg.org/action/showImage?doi=10.1190/segam2017-17797818.1&iName=master.img-012.jpg&w=215&h=85
http://library.seg.org/action/showImage?doi=10.1190/segam2017-17797818.1&iName=master.img-012.jpg&w=215&h=85
http://library.seg.org/action/showImage?doi=10.1190/segam2017-17797818.1&iName=master.img-014.jpg&w=215&h=85
http://library.seg.org/action/showImage?doi=10.1190/segam2017-17797818.1&iName=master.img-014.jpg&w=215&h=85


 

 
EDITED REFERENCES  

Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2017 

SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online 

metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.  

  

REFERENCES  

Arthur, D., and S. Vassilvitskii, 2007, k-means++: the advantages of careful seeding: Proceedings of the 

18th annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied 

Mathematics, 1027–1035. 

Bowers, G. L., 1995, Pore pressure estimation from velocity data: Accounting for overpressure 

mechanisms besides undercompactions, SPE Drilling & Completion, 10, 89–95, 

https://dx.doi.org/10.2118/27488-PA. 

Bowers, G. L., 2001, Determining an appropriate pore-pressure estimation strategy, Offshore Technology 

Conference, https://dx.doi.org/10.4043/13042-MS. 

Bruce, C. H., 1984, Smectite dehydration-its relation to structural development and hydrocarbon 

accumulation in northern Gulf of Mexico Basin, AAPG Bulletin, 68, 673–683, 

https://doi.org/10.1306/ad461363-16f7-11d7-8645000102c1865d.  

Chatterjee, R., M. Mukhopadhyay, and S. Paul, 2011, Overpressure zone under the Krishna–Godavari 

offshore basin: Geophysical implications for natural hazard in deepter-water drilling, Natural 

Hazards, 57, 121–132, https://dx.doi.org/10.1007/s11069-010-9659-6. 

Dutta, N. C., 1986, Shale compaction, burial diagenesis, and geopressures: A dynamic model, solution 

and some results, in J. Burrus, ed., Thermal modeling in sedimentary basins: Editions Technip, 

149–172. 

Eaton, B. A., 1975, The equation for geopressure prediction from well logs, Presented at the SPE Annual 

Technical Conference and Exhibition, SPE, https://dx.doi.org/10.2118/5544-MS. 

Hao, F., H. Zou, Z. Gong, S. Yang, and Z. Zeng 2007, Hierarchies of overpressure retardation of organic 

matter maturation: Case studies from petroleum basins in China, AAPG Bulletin, 91, 1467–1498, 

https://dx.doi.org/10.1306/05210705161. 

Kataraha, K., 2003, Analysis of overpressure on the Gulf of Mexico shelf: Offshore Technology 

Conference, https://dx.doi.org/10.4043/15293-MS. 

Katahara, K., 2006, Overpressure and shale properties: Stress unloading or smectite-illite transition?: 76th 

Annual International Meeting, SEG, Expanded Abstracts, https://dx.doi.org/10.1190/1.2369809. 

Hoesni, M. J., 2004, Origins of overpressure in the Malay Basin and its influence on petroleum systems: 

Ph.D. Thesis, University of Durham. 

Lahann, R. W., D. K. McCarty, and J. C. C. Hsieh, 2001, Influence of clay diagenesis on shale velocities 

and fluid-pressure: Offshore Technology Conference, https://dx.doi.org/10.4043/13046-MS. 

Lahann, R. W., and R. E. Swarbrick, 2011, Overpressure generation by load transfer following shale 

framework weakening due to smectite diagenesis: Geofluids, 11, 362–375, 

https://dx.doi.org/10.1111/gfl.2011.11.issue-4. 

Mukerji, T., N. C. Dutta, M. Prasad, and J. Dvorkin 2002, Seismic detection and estimation of 

overpressures part I: The rock physics basis, CSEG Recorder, 27, 34–57. 

Ramdhan, A. M., and N. R. Goulty, 2011, Overpressure and mudrock compaction in the Lower Kutai 

Basin, Indonesia: a radical reappraisal: AAPG Bulletin, 95, 1725–1744, 

https://dx.doi.org/10.1306/02221110094. 

Swarbrick, R. E., and M. J. Osborne, 1998, Mechanisms that generate abnormal pressures: An overview, 

in B. E. Law, G. F. Ulmishek, and V. I. Slavin, eds., Abnormal pressure in hydrocarbon 

environments: American Association of Petroleum Geologists Memoir 70, pp. 13–34. 

© 2017 SEG 
SEG International Exposition and 87th Annual Meeting

Page 3704

D
ow

nl
oa

de
d 

09
/2

7/
17

 to
 1

29
.7

.1
06

.6
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

https://dx.doi.org/10.2118/27488-PA
https://dx.doi.org/10.4043/13042-MS
https://doi.org/10.1306/ad461363-16f7-11d7-8645000102c1865d
https://dx.doi.org/10.1007/s11069-010-9659-6
https://dx.doi.org/10.2118/5544-MS
https://dx.doi.org/10.1306/05210705161
https://dx.doi.org/10.4043/15293-MS
https://dx.doi.org/10.1190/1.2369809
https://dx.doi.org/10.4043/13046-MS
https://dx.doi.org/10.1111/gfl.2011.11.issue-4
https://dx.doi.org/10.1306/02221110094
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&crossref=10.1306%2F02221110094&citationId=p_15
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&crossref=10.1306%2F05210705161&citationId=p_8
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&crossref=10.1007%2Fs11069-010-9659-6&citationId=p_5
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&crossref=10.2118%2F27488-PA&citationId=p_2
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&crossref=10.1007%2Fs11069-010-9659-6&citationId=p_5
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&crossref=10.1111%2Fj.1468-8123.2011.00350.x&citationId=p_13


Qin, X., and D. Han, 2016, Seismic Characters of Pore Pressure Due to Smectite-to-illite Transition: 78th 

Annual International Conference and Exhibition, EAGE, Extended Abstracts, 

https://doi.org/10.3997/2214-4609.201601462.  

Verm, R., L. Liang, and F. J. Hilterman, 1998, Significance of geopressure in predicting lithology: The 

Leading Edge, 17, 227–227, https://dx.doi.org/10.1190/1.1437952. 

Yu, H., and F. J. Hilterman, 2014, The effect of pressure on rock properties in the Gulf of Mexico: 

Comparison between compaction disequilibrium and unloading: Interpretation, 2, SB1–SB15, 

https://dx.doi.org/10.1190/INT-2013-0067.1. 

 

 

© 2017 SEG 
SEG International Exposition and 87th Annual Meeting

Page 3705

D
ow

nl
oa

de
d 

09
/2

7/
17

 to
 1

29
.7

.1
06

.6
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

https://doi.org/10.3997/2214-4609.201601462
https://dx.doi.org/10.1190/1.1437952
https://dx.doi.org/10.1190/INT-2013-0067.1
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&system=10.1190%2F1.1437952&citationId=p_18
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&system=10.1190%2F1.1437952&citationId=p_18
http://library.seg.org/action/showLinks?doi=10.1190%2Fsegam2017-17797818.1&system=10.1190%2FINT-2013-0067.1&citationId=p_19



