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ABSTRACT

We have investigated the impact of wave-induced fluid flow,
including Biot flow and mesoscopic flow, on the signatures of
seismic reflectivity in heterogeneous reservoir rocks. We have
incorporated the dynamic poroelastic responses of mesoscopic
flow into the classical Biot theory. The resulting effective Biot
media could capture the characteristics of velocity dispersion
and wave attenuation in heterogeneous poroelastic media. On
the basis of this effective Biot media, an approach was devel-
oped to compute the poroelastic reflection at arbitrary angles
and frequencies from the boundary of two heterogeneous porous
media. The computed poroelastic reflections not only depended
on the elastic properties’ contrast and incident angle, but also

relied on the fluid mobility and observational frequency. For a
typical sand-shale reflector, with the given rock and fluid prop-
erties, we found that the effect of mesoscopic flow causes P-
wave reflection amplitude variations with the frequency being
as high as 40% and a maximum phase shift as high as 16° at the
seismic exploration frequency band. In addition, it was found
that the amplitude variation with offset intercept and the gradient
at the poroelastic interface were impacted by the mesoscopic
flow and had a decreasing trend with frequency. Therefore,
ignoring the impact of mesoscopic flow could possibly lead
to uncertainty in seismic imaging as well as quantitative inter-
pretation of reservoir properties. In comparison, the Biot flow-
induced seismic dispersion effect, which occured at a very high-
frequency range, was almost negligible.

INTRODUCTION

Seismic waves propagating in heterogeneous porous media cre-
ate fluid pressure gradients and consequently induce fluid flow.
During the process of fluid flow, viscous-inertial loss takes place
and dissipates mechanical energy into heat, which is responsible
for the intrinsic attenuation of seismic waves (Aki and Richards,
1980; Müller et al., 2010). The wave-induced fluid flow typically
affects wave propagation characteristics (Biot, 1956a, 1956b, 1962;
Pride and Berryman, 2003a, 2003b), and hence it affects the behav-
ior of reflection coefficients. The most pronounced influence is that
the reflection coefficients are frequency dependent, known as re-
flection dispersion. It is of considerable interest to understand
the poroelastic reflection signatures, which are believed to have po-
tential in revealing reservoir properties, such as saturation content

and flow characteristics. Furthermore, an extensive investigation on
the poroelastic reflection at a wide frequency range is critical to help
us realize the physical discrepancy standing behind the different
geophysical measurements at various scales, which typically in-
clude the surface seismic data (100−2 Hz), virtual seismic profile
(VSP) data (102−3 Hz), sonic logs (103−4 Hz), and lab measure-
ments (100−6 Hz). The present work contributes to quantifying
the impact of wave-induced fluid flow on the signatures of reflec-
tion coefficients in heterogeneous reservoir rocks.
In the past decades, dissipation-related seismic attributes already

have been used to interpret seismic data as hydrocarbon indicators
or to map reservoir properties (e.g., Taner et al., 1979; Castagna
et al., 2003; Ebrom, 2004; Hofmann, 2006; Odebeatu et al.,
2006). Nevertheless, most of those applications are empirical and
qualitative. Based on the analysis of the experimental and field seis-
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mic data, Korneev et al. (2004) and Goloshubin et al. (2001, 2006)
report that the seismic reflection from a fluid-saturated layer shows
a clear frequency-dependent amplitude response, and they further
demonstrate that the theoretical formulation with a diffusive term
gives a reasonable match with the physical modeling data. Chap-
man et al. (2006) systematically investigate the impacts of hydro-
carbon-related dispersion and attenuation on the seismic reflections
and conclude that such influences are intimately associated with the
amplitude variation with offset (AVO) behavior at the interface.
Generally, much of the progress related to the frequency-dependent
seismic analysis has been driven by the development of spectral
decomposition methods, which break down the seismic reflection
signal into its component frequencies (Chakraborty and Okaya,
1995; Partyka et al., 1999; Castagna et al., 2003).
From a theoretical point of view, many authors (Geertsma and

Smit, 1961; Stoll, 1977; Dutta and Odé, 1983; Bourbié et al.,
1987; Gurevich and Schoenberg, 1999; Gurevich et al., 2004) study
the seismic reflection coefficients at an interface between two
porous homogeneous media. The slow P-wave related to the fluid
pressure diffusion is generated at the interface of poroelastic con-
tact. Based on their calculations, the inelastic energy loss for
reflection amplitudes is only significant at a very high frequency.
Physically, this is understandable because with typical subsurface
rock and fluid properties, the relative fluid flow with respect to
the solid, namely, global flow due to wavelength scale pore-pressure
equilibration, becomes negligible at a low frequency. Meanwhile,
the reflections at the interface between a liquid and a liquid-satu-
rated porous solid are also investigated extensively by Deresiewicz
and Rice (1960), Denneman et al. (2002), Gurevich et al. (2004),
Rubino et al. (2006), and Bouzidi and Schmitt (2012). The
deviation of poroelastic reflections from the elastic one can be sig-
nificant at an interface between a free fluid (water) and gas-
saturated porous medium because of the large contrast in the
compressibility of water and gas (Denneman et al., 2002; Gurevich
et al., 2004).
However, those situations are too ideal to permit the application

of the theory to most subsurface sedimentary rocks, which are gen-
erally heterogeneous by their very nature. Consequently, it is essen-
tial to understand the poroelastic reflection signatures in realistic
heterogeneous porous rocks, where the effect of velocity dispersion
and wave attenuation becomes more prominent. As we know, in
partially saturated rock or in fully saturated elastically hetero-
geneous rock, the viscous loss is mainly caused by an internal
equilibration that takes places with fluid flowing from the more
compliant high-pressure regions to the relatively stiffer low-pres-
sure regions (Batzle et al., 2006). Based on the heterogeneities
of various scale, such local flow can be categorized as squirt flow
and mesoscopic flow. Squirt flow typically occurs at the micro-
scopic pore scale (O’Connell and Budiansky, 1974; Mavko and
Nur, 1975; Mavko and Jizba, 1991; Dvorkin et al., 1995; Chapman
et al., 2002; Tang, 2011), whereas mesoscopic flow is created by the
heterogeneities on a scale much larger than the typical pore size but
smaller than the wavelength (White, 1975; Dutta and Odé, 1979a,
1979b; Gelinsky and Shapiro, 1997; Gurevich et al., 1997; Shapiro
and Müller, 1999; Pride and Berryman, 2003a, 2003b; Müller and
Gurevich, 2004, 2005; Carcione and Picotti, 2006; Müller et al.,
2007; Carcione et al., 2013). Generally, squirt flow is usually con-
sidered to be important at ultrasonic frequencies, whereas meso-
scopic flow is increasingly considered as the dominant cause of

fluid-related attenuation in the seismic exploration band (Pride et al.,
2004; Müller et al., 2010).
With regard to the influences of local flow on the reflection co-

efficients, Quintal et al. (2009) and Ren et al. (2009) combine the
analytical solution of White’s 1D model (White, 1975; Carcione
and Picotti, 2006) and the analytical expression of reflection coef-
ficient in viscoelastic media to analyze the reflection dispersion sig-
natures in a thinly layered, partially saturated reservoir with a non-
dispersive overburden. Alternately, rather than considering the po-
roelastic behavior due to the complex interaction between fluid and
solid, many authors report the impact ofQ-contrast on the reflection
amplitude and phase in viscoelastic media theoretically (White,
1965; Bourbié, 1983; Lines et al., 2008; Morozov, 2011) and ex-
perimentally (Bourbié and Nur, 1984; Lines et al., 2012).
In general, the theoretical formulation for the reflection coeffi-

cients from the boundary of heterogeneous poroelastic media as
a function of material properties, incident angle, and frequency
is very complicated. In this study, we seek to present an effective
procedure to calculate the poroelastic reflection coefficients at ar-
bitrary incident angles and frequencies. In addition, it is well known
that the Biot flow and local flow always take place simultaneously
when heterogeneities are present. However, studying the reflection
dispersion signatures including the effects of Biot flow and local
flow simultaneously is sparsely documented. In this paper, to pre-
serve the theoretical generality, the computed poroelastic reflection
will incorporate the effect of local flow as well as Biot flow.
To characterize the reflection dispersion signatures, the first es-

sential question to be addressed is how to describe the hetero-
geneous porous media that waves propagate through. Many
poroelastic models have been proposed to explain velocity
dispersion and wave attenuation characteristics due to the inertial
fluid effect. In this paper, emphasis will be placed on the dou-
ble-porosity dual-permeability (DPDP) model developed by Berry-
man and Wang (1995, 2000), Pride and Berryman (2003a, 2003b),
and Pride et al. (2004). There are several reasons to choose the dou-
ble-porosity model. First of all, it represents a general framework to
model wave propagation through heterogeneous porous structures,
without placing any restriction on the mesoscopic geometry of the
heterogeneity (Pride et al., 2004). Second, to highlight the effect of
intrinsic loss and dispersion on reflection dispersion in the seismic
frequency band, the geologic heterogeneities here will be specified
as being of mesoscopic scale. Moreover, Pride et al. (2004) show
that this theory can also be designed to simulate the dispersion ef-
fect associated with patchy saturation and squirt flow.
The content of this paper is structured as follows: First, we briefly

review wave dispersion and attenuation characteristics using the
DPDP model. Next, we present how to use an effective procedure
to calculate the poroelastic reflection in heterogeneous porous me-
dia. Following this section, a typical sand-shale reflector will be
presented to quantitatively analyze the seismic reflection dispersion
characteristics in terms of its magnitude and phase angle. The po-
tential implications for reservoir characterization will also be ex-
plored. Finally, we end with discussions and conclusions.

THEORY

Double-porosity dual-permeability model

The DPDP model often represents a more general framework to
explain the velocity dispersion and attenuation due to mesoscopic
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fluid flow. Heterogeneous porous media is described as a composite
that consists of two distinct porous phases, exhibiting contrasting
hydraulic and elastic properties but saturated by a single fluid phase.
One typical example to elucidate the double-porosity model is a
fractured reservoir: The fracture or crack porosity normally occu-
pies small portions of the volume, but with higher compressibility
and permeability than those of the host rock.
The governing equations for DPDP in the frequency domain are

given as (Pride and Berryman, 2003a, 2003b; Pride et al., 2004)

∇ × τD − ∇Pc ¼ −iωðρvþ ρfq1 þ ρfq2Þ; (1)

�
q1
q2

�
¼ −

1

η

�
κ11 κ12
κ12 κ22

� �
∇p̄f1 − iωρfν
∇p̄f2 − iωρfν

�
; (2)

2
4∇ × ν
∇ × q1
∇ × q2

3
5 ¼ iω

2
4 a11 a12 a13
a12 a22 a23
a13 a23 a33

3
5
2
4 Pc

p̄f1

p̄f2

3
5þ iω

2
4 0

ζint
−ζint

3
5;
(3)

−iωζint ¼ γðωÞðp̄f1 − p̄f2Þ; (4)

−iωτD ¼ ½GðωÞ − iωgðωÞ�
�
∇νþ ð∇νÞT −

2

3
∇ × νI

�
: (5)

Here, phases 1 and 2 refer to the host phase and heterogeneity
phase, respectively, τD and Pc represent the total average deviatoric
stress and total average confining pressure acting on the averaging
volume of porous composite, respectively, ν denotes the average
solid-grain velocity, qi denotes the macroscopic fluid flux across
phase i, κijði; j ¼ 1;2Þ describes the dynamic permeability of the
two phases as well as their coupling, p̄fi indicates the average fluid
pressure within phase i, ζint indicates the increment of fluid content
due to internal mesoscopic flow where fluid pressure is relaxed be-
tween phases 1 and 2, and GðωÞ is the Hilbert transform of gðωÞ
characterizing the dispersion features of shear modulus of the
porous composite. The constants aij correspond to the high-fre-
quency responses without internal fluid pressure relaxation and
are expressed with the following relations (Pride et al., 2004):

a11 ¼ 1∕Kd; a22 ¼
v1α1
K1

d

�
1

B1

−
α1ð1 −Q1Þ
1 − K1

d∕K2
d

�
;

a33 ¼
v2α2
K2

d

�
1

B2

−
α2ð1 −Q2Þ
1 − K2

d∕K1
d

�
; a12 ¼ v1Q1α1∕K1

d;

a13 ¼ v2Q2α2∕K2
d;

a23 ¼ −
α1α2K1

d∕K2
d

ð1 − K1
d∕K2

dÞ2
�
1

K
−

v1
K1

d

−
v2
K2

d

�
;

where theQi are given by

Q1 ¼
1

v1

1 − K2
d∕Kd

1 − K2
d∕K1

d

and Q2 ¼
1

v2

1 − K1
d∕Kd

1 − K1
d∕K2

d

. ð6Þ

Here, v1 and v2 are the volume fractions of phases 1 and 2 within an
averaging volume of the composite, K1

d and K
2
d are the bulk moduli

of the drained rock frames of phases 1 and 2, respectively, Kd is the
drained bulk modulus of the double-porosity composite, α1 and α2
are the Biot’s constants of phases 1 and 2, respectively, and B1 and
B2 are the Skempton’s coefficient of phases 1 and 2, respectively.
Each set of the governing equation has explicit physical signifi-

cance. Note that the above equations characterize the signatures of
three types of fluid flow: two types of external fluid flow and one
type of internal fluid flow. Equation 2 represents the generalized
Darcy’s law corresponding to the external fluid flow at the macro-
scopic scale. Equation 4 gives the transport law to characterize the
internal mesoscopic flow, which results in the main viscous loss for
the heterogeneous poroelastic system. In addition, equation 1 rep-
resents the conservation of the momentum, and equations 3 and 5
are the generalized compressibility law. Further analysis of these
equations suggests that there exist three P-waves and a single S-
wave (Berryman and Wang, 2000; Pride et al., 2004). The first type
of P-wave represents the conventional fast P-wave, and the other
two slow P-wave modes correspond to fluid pressure diffusion
due to the external fluid flow.
The frequency-dependent relaxation coefficient γðωÞ in equa-

tion 4, which essentially controls the mesoscopic flow characteris-
tic, is defined as (Pride et al., 2004)

γðωÞ ¼ γm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − i

ω

ωm

r
; (7)

where

γm ¼ −
κ1Kd

1

ηL2
1

�
a12 þ B0ða22 þ a33Þ

R1 − B0∕B1

�
½1þOðκ1∕κ2Þ�; (8)

ωm ¼ ηB1Kd
1

κ1α1

�
γm

V
S

�
2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1B2Kd

2α1
κ2B1Kd

1α2

s �
: (9)

Here, κ1 and κ2 are the permeability of phases 1 and 2, respectively,
η is the fluid viscosity, B0 is the Skempton’s coefficient of the dou-
ble-porosity composite, and R1 indicates the ratio of the average
confining pressure in phase 1 to the external pressure applied to
the double-porosity composite. Two geometric parameters L1

and V∕S describe the shape and size of the heterogeneity: S is
the surface area of the interface between the two phases in each
volume V of composite, and L1 describes the phase 1 length with
pore fluid pressure gradient that relaxes in the final approach to fluid
pressure equilibrium (Pride et al., 2004). Note that the parameters
controlling the characteristic frequency are mainly dependent on the
properties of host phase 1, and hence host phase 1 actually deter-
mines the timing of the fluid pressure diffusion.

Effective Biot media

To illustrate the effects of the wave-induced flow on the reflection
of seismic waves, we treat the simplified problem of reflection and
transmission of a plane compressional seismic wave incident with
an oblique angle at a plane interface between two heterogeneous
porous media in the upper and lower half-space. If the DPDP
model is used to describe the wave characteristics in heterogeneous
porous materials, the incident plane P-wave will generate four re-
flected wave modes and four transmitted wave modes: fast P-wave,
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converted S-wave, first-kind slow P-wave, and second-kind slow
P-wave (Berryman and Wang, 1995, 2000; Pride et al., 2004;
Dai and Kuang, 2006). Mathematically, solving such a problem
of plane-wave reflection and transmission in double-porosity media
becomes extremely tedious because there is a requirement of eight
boundary conditions to constrain the solutions of the reflection and
transmission coefficients. Consequently, it was deemed necessary to
describe the heterogeneous porous media in a simplified way.
Here, we reduce the double-porosity theory to the effective sin-

gle-porosity Biot theory suggested by Pride et al. (2004). With the
assumption that the heterogeneity phase is totally embedded in
the host phase, the fluid motion relative to the solid skeleton of
the heterogeneity phase vanishes. The effect of internal flow is in-
cluded in the effective drained bulk modulus, which can be derived
from the original parameters of the double-porosity model. The fre-
quency-dependent poroelastic moduli in effective Biot media are
given as

1

K�
d
¼ a11 −

a213
a33 − γ∕iω

; (10)

B ¼ −a12ða33 − γ∕iωÞ þ a13ða23 þ γ∕iωÞ
ða22 − γ∕iωÞða33 − γ∕iωÞ − ða23 þ γ∕iωÞ2 ; (11)

1

K�
u
¼ 1

K�
d
þ B

�
a12 −

a13ða23 þ γ∕iωÞ
a33 − γ∕iω

�
: (12)

Here, K�
d is the effective drained bulk modulus, B is the effective

Skempton’s coefficient, and K�
u is the effective undrained bulk

modulus. For a better understanding, assuming that if the average
fluid pressure across the double-porosity composite under the
drained condition is not changed, but in order for the internal pore
pressure to be equilibrated, the total volumetric response should be
redefined as inelastic or frequency dependent. In fact, K�

d represents
the effective elastic modulus, which takes into account the internal
fluid-pressure equilibration between two distinct porous phases.
The approach adopted in this study is to replace the hetero-

geneous porous media with effectively homogeneous porous media
by reducing the internal local flow term. As a consequence, the ef-
fect of local flow is taken into account by a set of poroelastic param-
eters in the classical Biot theory. In other words, the resulting
effectively homogeneous media is mathematically expressed in
the form of classical Biot theory, but it actually incorporates the
frequency dependent, wave-induced exchange of fluid fluxes be-
tween more compliant regions and relatively stiff regions. We call
this effectively homogeneous porous media effective Biot media.
It is necessary to point out that the concept of effective Biot me-

dia is not limited to the DPDP model. It is also applicable to many
other poroelastic models (Dutta and Odé, 1979a, 1979b; Dvorkin
et al., 1995; Chapman et al., 2002; Müller and Gurevich, 2005; Car-
cione and Picotti, 2006; Yao et al., 2013), which can incorporate the
effect of local flow into the corresponding effective poroelastic
parameters, such as the effective drained bulk modulus, effective
undrained bulk modulus, effective wavenumber, and so on. For ex-
ample, rather than use the effective drained bulk modulus, Yao et al.
(2013) propose to use the effective fluid modulus to account for the
frequency-dependent internal flow effect. The geologic scenario can

also be extended to the patchy-saturation model, squirt flow model,
and others.
The importance of the concept of effective Biot media lies in that

it allows for the local flow loss, but it does not require an analysis of
a second slow wave. This is critical to the later treatment in this
paper because the problem of solving the reflection coefficients
from the boundary of heterogeneous porous media can be trans-
formed to the problem of solving the reflection coefficients from
the boundary of effective Biot media. Consequently, the problem
of wave propagation characteristics and plane-wave boundary con-
ditions can be cast in the framework of the classical Biot theory.

Phase velocities and attenuations

With all of the defined poroelastic parameters, the phase veloc-
ities and attenuations of effective Biot media can be determined.
The wavenumber of the fast P-wave (kp1), slow P-wave (kp2),
and S-wave (ks) are, respectively, given by (Tang and Cheng, 2004)

kp1 ¼ kp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1ρf∕ρ
1 − b1∕b0

s
;

kp2 ¼ kp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2ρf∕ρ
1 − b2∕b0

s
;

ks ¼ ω
ffiffiffiffiffiffiffiffiffiffi
ρ̂∕μ�

p
; (13)

where

b1 ¼
1

2
b0

�
c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4αð1 − cÞ∕b0

q �
;

b2 ¼
1

2
b0

�
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4αð1 − cÞ∕b0

q �
;

b0 ¼ M�ðK�
u þ 4μ�∕3Þ∕α�;

kp0 ¼ ω∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK�

u þ 4μ�∕3Þ∕ρ
p

;

c ¼ ðα� − bsρ∕ρfb0Þ∕ðα� þ bsÞ;
bs ¼ ρfθω

2; ρ̂ ¼ ρþ ρ2fω
2θ; θ ¼ iκðωÞ∕ηω:

(14)

Here, ρ and ρf are the bulk density and pore fluid density, respec-
tively; μ� is the effective undrained shear modulus, which is
considered to be equal to dry rock’s shear modulus μd; α� ¼
1 − K�

d∕Ks is the effective frequency-dependent Biot’s coefficient;
M� ¼ ðα�−ϕKs

þ ϕ
Kf
Þ−1, in which ϕ, Kf , and Ks are the porosity, fluid

bulk modulus, and solid bulk modulus, respectively; and κðωÞ rep-
resents the overall dynamic permeability of the double-porosity
composite and can be approximated using the harmonic average
(Pride et al., 2004):

1

κðωÞ ¼
ν1

κ1ðωÞ
þ ν2

κ2ðwÞ
; (15)

where κ1ðωÞ and κ2ðωÞ are the dynamic permeability of the porous
phases 1 and 2, respectively. The dynamic permeability for each
phase is given as (Johnson et al., 1987)
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κiðωÞ ¼
κih

1 − i
2
τκiρfω∕ðηϕÞ

i
1∕2

− iτκiρfω∕ðηϕÞ
ði ¼ 1;2Þ;

(16)

in which τ is the tortuosity and κiði ¼ 1;2Þ are the previously men-
tioned static permeability of the phases 1 and 2, respectively.
Therefore, based on the wavenumbers computed in equation 13,

the phase velocities of the fast P-wave (VP1), slow P-wave (VP2),
and S-wave (VS) are respectively calculated using

VP1 ¼ ω∕Refkp1g;
VP2 ¼ ω∕Refkp2g;
VS ¼ ω∕Refksg: (17)

Correspondingly, the attenuation of the fast P-wave (Qp−1
1 ), slow P-

wave (Qp−1
2 ), and S-wave (Qs−1) are given by

Qp−1
1 ¼ 2 Imfkp1g∕Refkp1g;

Qp−1
2 ¼ 2 Imfkp2g∕Refkp2g;

Qs−1 ¼ 2 Imfksg∕Refksg; (18)

where Refkg and Imfkg indicate the real and imaginary part of the
wavenumber k, respectively.

Poroelastic reflection coefficients

We consider the poroelastic interface separating two effective
Biot media denoted by superscripts 1 and 2, respectively, as shown
in Figure 1. The incident wave is taken to be a fast P-wave of an-
gular frequency ω, with an incident angle θi with respect to the nor-
mal to the boundary. At the interface, the incident wave is reflected
into medium 1 and transmitted into medium 2, and in media the fast
P-wave, slow P-wave, and SV-wave are generated.
To solve the seismic reflection and transmission at the interface of

effective Biot medium, we have the boundary conditions (Deresie-
wicz and Rice, 1960; Dutta and Odé, 1983; Bourbié et al., 1987; Dai
and Kuang, 2006) as follows:

1) continuity of the horizontal solid matrix displacement

u1x ¼ u2x (19)

2) continuity of the normal solid matrix displacement

u1z ¼ u2z (20)

3) continuity of the total normal stress

σ1zz ¼ σ2zz (21)

4) continuity of the total shear stress

σ1xz ¼ σ2xz (22)

5) continuity of the increment of fluid content

W1
z ¼ W2

z (23)

6) continuity of the fluid pressure

p1
f ¼ p2

f: (24)

Note that the above boundary conditions are restricted to the x − z
plane, and they are only valid at the open-pore interface. Because
the dynamic interaction between the upper and lower poroelastic
media is frequency dependent, all those boundary conditions are
hence also frequency dependent. The seismic reflection coefficients
can therefore be calculated through solving the Zoeppritz-style
equations:

GR ¼ P; (25)

where R is a 6 × 1 vector of the unknown reflection and transmis-
sion coefficients and is given by

R ¼

0
BBBBBB@

RP1P1

RP1P2

RP1 S

TP1P1

TP1P2

TP1 S

1
CCCCCCA
: (26)

Here, RP1P1, RP1P2, and RP1 S are the reflection coefficients of the
fast P-, slow P- and S-waves, respectively; TP1P1, TP1P2, and TP1 S

are the transmission coefficients of the fast P-, slow P- and S-waves,
respectively; andG is a 6 × 6matrix, which characterizes the angle-
dependent dynamic poroelastic responses in the upper and lower
half space of the effective Biot media:

G¼

0
BBBBBBBBB@

sinθrp1 sinθrp2 cosθrs −sinθtp1 −sinθtp2 cosθts
cosθrp1 cosθrp2 −sinθrs cosθtp1 cosθtp2 sinθts
X1 X2 X3 X4 X5 X6

μ�
1
sin2θrp1
VP11

μ�
1
sin2θrp2
VP12

μ�
1
cos2θrs
VS1

μ�
2
sin2θtp1
VP21

μ�
2
sin2θtp2
VP22

−μ�
2
cos2θts
VS2

δp11 cosθ
r
p1 δp12 cosθ

r
p2 −δs1 sinθrs δp21 cosθ

t
p1 δp22 cosθ

t
p2 δs2 sinθ

t
s

α�
1
M�

1
þM�

1
δp11

VP11

α�
1
M�

1
þM�

1
δp12

VP12

0 −α�
2
M�

2
þM�

2
δp21

VP21

−α�
2
M�

2
þM�

2
δp22

VP22

0

1
CCCCCCCCCA
;

(27)

where

Figure 1. Reflection and transmission of a compressional plane
wave at an interface between two effective Biot media. The effective
single-porosity Biot medium is reduced from the double-porosity
medium.
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X1 ¼
λ�1 þ ðα�1Þ2M�

1 þ α�1M
�
1δp11 þ 2μ�1ðcos θrp1Þ2

VP11

;

X2 ¼
λ�1 þ ðα�1Þ2M�

1 þ α�1M
�
1δp12 þ 2μ�1ðcos θrp2Þ2

VP12

;

X3 ¼ −
2μ�1ðcos θrsÞ2

VS1

;

X4 ¼ −
λ�2 þ ðα�2Þ2M�

2 þ α�2M
�
2δp12 þ 2μ�2ðcos θtp1Þ2

VP21

;

X5 ¼ −
λ�2 þ ðα�2Þ2M�

2 þ α�2M
�
2δp12 þ 2μ�2ðcos θtp2Þ2

VP22

;

X6 ¼ −
2μ�2ðcos θtsÞ2

VS2

: (28)

P is a 6 × 1 vector that represents the information of the incident P-
wave in the upper medium and is given by

P ¼

0
BBBBBBBB@

− sin θi

cos θi

X7
μ�
1
sin 2θi

VP11

δp11 cos θi

− α�
1
M�

1
þM�

1
δp11

VP11

1
CCCCCCCCA
; (29)

where X7 ¼ − λ�
1
þðα�

1
Þ2M�

1
þα�

1
M�

1
δp11þ2μ�

1
ðcos θiÞ2

VP11

.
Detailed derivations are carried out in Appendix A. In the above

equations, VP11
, VP12

, VS1 and VP21
, VP22

, VS2 are the frequency-de-
pendent fast P-wave velocity, slow P-wave velocity, and S-wave
velocity in the upper medium and low medium, respectively, which
can be calculated based on equation 17; λ�i ¼ K�

di − 2
3
μ�i ði ¼ 1;2Þ is

Lame’s parameter of the effective Biot media under a drained con-
dition; δpi1, δpi2, and δsi;ði ¼ 1;2Þ refer to the ratios of the potential
for the relative fluid displacement to the rock frame displacement
for the fast P-wave, slow P-wave, and S-wave, respectively; θrp1,
θrp2, and θrs refer to the reflected angles of the fast P-wave, slow
P-wave, and S-wave, respectively; and θtp1, θ

t
p2, and θts refer to

the transmitted angles of the fast P-wave, slow P-wave, and S-wave,
respectively.
Following Snell’s law in effective Biot media (equation A-17 in

Appendix A), they can be expressed as

θrp1 ¼ θi; θrp2 ¼ arcsin
sin θi

VP11

VP12;

θrs ¼ arcsin
sin θi

VP11

VS1; θtp1 ¼ arcsin
sin θi

VP11

VP21;

θtp2 ¼ arcsin
sin θi

VP11

VP22; θts ¼ arcsin
sin θi

VP11

VS2.

(30)

The resulting reflection coefficients now become complex numbers
due to the wave dispersion and attenuation in heterogeneous poroe-
lastic media. Thus, we can define the reflection coefficients as

RðωÞ ¼ jRðωÞj expðiφÞ; (31)

where jRðωÞj indicates the magnitude and φ indicates the phase an-
gle for the poroelastic reflection coefficients. In the following sec-
tions, we will use these two parameters to characterize the reflection
dispersion signatures. However, note that if the porosity ϕ in equa-
tion 25 goes to zero, the wave-induced fluid flow will naturally dis-
appear. In this case, it is easy to demonstrate that equation 25 will be
consequently reduced to the classical Zoeppritz equations.
It is necessary to point out that all of the frequency-dependent

poroelastic parameters in equation 25 are computed based on the
effective single-porosity Biot model reduced from the double-
porosity model, which suggests that the effect of local flow is in-
corporated into the poroelastic wave propagation. Correspondingly,
the resulting reflection coefficients will also contain the responses
from Biot flow in combination with local flow.

A NUMERICAL EXAMPLE

So far, we have presented a theoretical formulation of the reflec-
tion and transmission of plane seismic waves at a boundary between
two heterogeneous porous rocks. In this section, we use a numerical
example to quantitatively investigate the impact of wave-induced
fluid flow on the seismic reflection coefficients at a wide range
of angles and frequencies.

Geologic model

We only consider an interface with two heterogeneous porous
half-spaces above and below. To mimic the realistic reservoir situa-
tion, we assume that the geologic model consists of an underlain
sandstone reservoir with an overburden shale layer. The sandstone
and shale have heterogeneous porous structures, which can be char-
acterized by the double-porosity model. To obtain their elastic prop-
erties, we start with a solid rock matrix, in which the minerals are
mixed using a Voigt-Reuss-Hill average (Mavko et al., 2009). The
mineral presenting in the upper medium (shale) consists of 85%
clay and 15% feldspar. The mineral presenting in the lower medium
(sandstone) consists of 95% quartz and 5% clay, implying that the
sandstone is pretty clean. The heterogeneity phases (phase 2) in the
sandstone and shale are assumed to represent the compliant parts of
the rock, whereas the matrix phases (phase 1) are considered to be
well consolidated.
Matrix rock properties for the overburden shale and underlain

sandstone are given in Table 1, where Ks and μs are the bulk
and shear moduli for the mineral matrix; Kd and μd are the bulk
and shear moduli of the dry rock frame; ϕ is the porosity, and note
that the porosities in the shale represent effective porosity, which
can be considered to get involved in the wave-induced fluid flow;
τ is the tortuosity parameter; and v indicates the volume fraction of
phase 1 or 2. The geometry of the heterogeneity phase is assumed as
penny shaped, and α and ε are used to represent the radius and as-
pect ratio of the heterogeneity, respectively. Two geometric param-
eters L1 and V∕S can be hence calculated using α and ε (Pride et al.,
2004). The properties of fluids are listed in Table 2, where Kf , ρf ,
and η are the bulk modulus, density, and viscosity of the pore fluid,
respectively. The overburden shale is assumed to be brine saturated
with viscosity of 1 cP, and the underlain sandstone is assumed to be
oil saturated with viscosity of 5 cP. Here, we only investigate the
situation of fully saturated reservoir rocks. Note that the wave
dispersion and attenuation caused by heterogeneous saturation in
partially saturated reservoir rocks, where fluids exchange between
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patches of different fluids, are not considered in this study. Also, for
simplicity, we assume that the host phase and heterogeneous phase
have the same mineral composition, but with a different level of
consolidation. The dry rock moduli are determined from the follow-
ing effective medium formula (Walton, 1987; Pride et al., 2002;
Pride and Berryman, 2003a):

Ki
d ¼ ð1 − ϕiÞKs∕ð1þ ciϕiÞ;

μid ¼ ð1 − ϕiÞμs∕ð1þ ciϕiÞ; (32)

where we take c1 ¼ 6 and 4 for the well consolidated host phase and
c2 ¼ 180 and 100 for the poorly consolidated heterogeneity phase,
in sandstone and shale, respectively. The overall drained bulk
modulus and shear modulus for the double-porosity composite
are computed by harmonic average for the effective media. The har-
monic average actually represents the isostress condition, which is
considered to be reasonably representative to describe the overall
elastic responses of the heterogeneous sedimentary rocks because
the soft phases (heterogeneity) likely have a shape that is prone to
be more elongated than compact (Pride et al., 2004). It should be
emphasized that, if the real frame moduli are stiffer than those pre-
dicted by the harmonic average, the passing seismic wave will cre-
ate less fluid pressure difference and hence reduce the amount of
mesoscopic flow loss discussed here (Yao, 2013).
These frame moduli are substituted into equation 6 to obtain the

constants aij; then, we can use equations 10–12 to compute the po-
roelastic moduli of effective Biot media; finally, with all those
parameters for the given geologic model, the phase velocities
and the reciprocal of the quality factors for the double-porosity
composite are computed based on equations 17 and 18, respectively.

Velocity dispersion and attenuation characteristics

The fast P-wave velocities for the upper and lower media are plot-
ted against frequency in Figure 2a. The solid lines represent the
velocity dispersion calculated based on the effective Biot theory,
which takes into account the effect of local flow and Biot flow.
We observe considerable velocity dispersion for the heterogeneous
sandstone at a low-frequency range of 10–100 Hz. By contrast, the
overburden shale exhibits much less dispersion effects, and the tran-
sitional frequency occurs at very low frequency (less than 1 Hz).
The mesoscopic flow is considered to be responsible for such
dispersion effects. Moreover, there is a slight ramp-up in the fast
P-wave for the upper medium and lower medium centered at a much
higher frequency, which is considered to be caused by the Biot flow.
Nevertheless, if we ignore the impact of local flow, as the dashed
lines illustrate, the classical Biot theory only predicts a negligible
dispersion effect. The attenuations of the fast P-wave for the upper
and lower media are plotted against frequency in Figure 3a. The
peak to the left for each attenuation curve corresponds to the fre-
quency at which the mesoscopic heterogeneity structure just has
time to equilibrate in one cycle, whereas the peak to the right cor-
responds to the Biot-loss maximum. Note that such a dependence of
the characteristic frequency on rock and fluid properties (such as
permeability and viscosity) for the mesoscopic fluid flow is oppo-
site to that of the Biot flow. It is also easy to determine that the local
viscous flow contributes to most of the dissipative energy in the
low-frequency range, whereas the global Biot flow plays a domi-
nant role in the energy dissipation for the high-frequency domain.

In Figures 2b and 3b, the slow P-wave exhibits fundamentally
different physical behavior in comparison with the fast P-wave.
At a lower frequency range, the velocity of the slow P-wave is very
low, approximating to zero. It then ramps up to approximately
700 m∕s at a higher frequency range. Attenuation of the slow P-
wave is very high at a low frequency, and then it decreases signifi-
cantly at a higher frequency. Although the slow P-wave only prop-
agates a very short distance before being fully dissipated, the slow
P-wave can markedly influence the fast P-wave reflection ampli-
tudes, which commonly carry information about the porous media
away from the interface to distant receivers. The S-wave dispersion
and the corresponding 1∕Q for the upper and lower media are plot-
ted against frequency in Figures 2c and 3c, respectively. Compared
with the fast P-wave dispersion and attenuation, the S-wave does
not show a dispersion effect due to mesoscopic flow. Nonetheless,
it is interesting to note that the S-wave dispersion and attenuation
caused by Biot flow are larger than those of the corresponding fast
P-wave dispersion.

Reflection dispersion signatures

For the given set of parameters, Figure 4 shows the computed
reflection amplitude and phase variation of the fast PP-wave as
a function of the frequency and incident angle. In the amplitude
versus incident angle (AVA) domain, Figure 4a shows that the

Table 1. Related parameters for rock frame properties of the
upper and lower media.

Parameter

Rock frame properties

Upper (shale) Lower (sandstone)

Phase 1 Phase 2 Phase 1 Phase 2

Kd (GPa) 22.0 4.2 14.2 0.58

μd (GPa) 6.9 1.5 15.6 0.64

v 0.93 0.07 0.96 0.04

ϕ 0.05 0.06 0.25 0.30

κ (md) 0.01 100 10 1000

α (m) — 0.05 — 0.08

ε — 0.1 — 0.1

τ 2.4 2 2.4 2

Table 2. Related parameters for the pore fluid properties of
the upper and lower media.

Parameter

Pore fluid properties

Upper (brine) Lower (oil)

Kf (GPa) 3.0 2.1

ρf (g∕cm3) 1.05 0.94

η (cP) 1 5
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reflection magnitude increases with an increase of the incident an-
gle, which agrees with the traditional class III AVO response (Ruth-
erford and Williams, 1989). In the amplitude versus frequency
domain, the low-frequency bright-spot channel occurring at the
seismic frequency band is intimately associated with the physical
discrepancy between the characteristic frequency of the overburden
shale and underlain reservoir sandstone. In a general way, the AVA

relationship is mainly influenced by the contrast of elastic proper-
ties, such as P-impedance and the VP∕VS ratio. However, the am-
plitude versus frequency relationship contains information about the
heterogeneities’ properties and fluid mobility. Figure 4b shows the
phase shift of the poroelastic reflection compared with that of elastic
reflection. It is found that the phase variation is also dependent on
the frequency and a nonnegligible phase shift, which can be as high

Figure 2. (a) Velocities of fast P-waves, (b) slow P-waves, and
(c) S-waves with respect to the frequency in the upper and lower
double-porosity medium (parameters are shown in Tables 1 and
2). The frequency range is from 10−3 to 1010 Hz, plotted on a log-
arithmic scale. To highlight the effect of local flow, the dashed lines
represent the velocity dispersion predicted by classical Biot theory
including only the effect of global Biot flow.

Figure 3. (a) Attenuation of fast P-waves, (b) slow P-waves, and
(c) S-waves with respect to the frequency in the upper and lower
double-porosity media (parameters in Tables 1 and 2). The fre-
quency range is from 10−3 to 1010 Hz, plotted on a logarithmic
scale.
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as 16°, occurs in the seismic exploration band. Nonetheless, the
phase variation shows little sensitivity to the incident angle change.
Now, we are going to give a detailed analysis regarding the fast

PP reflectivity dispersion characteristics (Figure 5) at a normal in-
cident angle. For the purpose of comparison: The black solid lines
indicate the heterogeneous poroelastic reflection including the ef-
fect of local mesoscopic flow and global Biot flow; the blue lines
represent the poroelastic reflection, which only takes into consid-
eration of global Biot flow; and the red dashed lines indicate the
elastic reflection coefficient, which is computed from the classical
Zoeppritz equation (Aki and Richards, 1980). Correspondingly, in
the case of elastic reflection, the saturated rock’s elastic responses
are computed using the Gassmann (1951) equation, which suggests
that the reflection coefficients do not include any intrinsic
dispersion effects. As we can observe in Figure 5a, the elastic re-
flection is consistent with the Biot reflection and the heterogeneous
poroelastic reflection only at a frequency band as low as 10−2 Hz.
Such a consistency physically makes sense because the global Biot
flow becomes negligible at a very low frequency, and the local

mesoscopic flow does not induce a dispersion effect at very low
frequency. It can be concluded that the porous dissipative medium
acts as an elastic medium only at a very low frequency (<10−2 Hz).
Regarding the dispersion characteristic of the heterogeneous poroe-
lastic reflection, the reflectivity dispersion occurring at roughly
0.01–100 Hz is evidently caused by mesoscopic flow, and the maxi-
mum dispersion effect at the seismic frequency domain can reach as
high as 40%. This huge dispersion effect should not be ignored
when using seismic reflections for quantitative seismic interpreta-
tion. Moreover, the negligible reflectivity dispersion occurring
above 106 Hz (the ultrasonic lab frequency band) is evidently as-
sociated with Biot flow.

Figure 4. (a) Reflection amplitude and (b) phase variation of the
fast PP wave as a function of frequency and incidence angle. Here,
phase variation indicates the deviation of the phase in the poroelas-
tic reflection from the constant phase in the elastic reflection.

Figure 5. Reflection (a) amplitude and (b) phase of the fast PP wave
as a function of frequency at a normal incidence angle. The red
dashed lines indicate the reflection coefficients computed for elastic
reflection, the blue solid lines indicate reflection coefficients com-
puted using the classical Biot theory, and the black solid lines in-
dicate the heterogeneous poroelastic reflection including the effect
of local mesoscopic flow and global Biot flow. The frequency bands
for the seismic, VSP, sonic log, and ultrasonic lab are highlighted in
the plot.
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Figure 5b plots the phase variation against the frequency at a nor-
mal incident angle. The phase angle of the poroelastic reflection is
consistent with that of the elastic reflection at the low- and high-
frequency limits. A phase advance occurs at 10−3 to approximately
10−1 Hz, but then a noticeable phase delay takes place at a broad
frequency range from 10−1 to 105 Hz. Both of these phase shifts
are mainly caused by the local mesoscopic flow. The small phase
advance occurring above 106 Hz is considered to be closely related
to the dispersion caused by the Biot flow.
Figure 6 shows the converted PS reflection as a function of fre-

quency. PS reflectivity is zero at a normal incident angle, which is
physically understandable because no PS conversion occurs at a
normal incident angle. At a nonzero incident angle, we observe that
the PS reflection presents a similar dispersion trend to what the fast
PP reflectivity does. However, it should be noted that the relative
dispersion effect for the PS reflection is bigger than that of the fast
PP reflection. In particular, the dispersion effect due to Biot flow is
more evident. Additionally, we find that the PS reflection has a
larger dispersion effect for the far offset than the near offset for
the given geologic model.

Implications for reservoir characterization

Figure 7 shows the AVO relationship with different frequencies
in the seismic exploration band. One valuable feature we can ob-
serve from the angle- and frequency-dependent amplitude is that
the AVO intercept and gradient (Castagna et al., 1998) are strongly
impacted by wave-induced fluid flow. Obviously, neglecting the
dispersion behavior of the reflectivity will bias the interpretation
of AVO signatures. For example, because the amplitude of reflec-
tivity might be considerably diminished due to dispersion behavior
caused by local flow, the class III AVO response can be possibly
interpreted as a class II AVO response (Rutherford and Williams,
1989) by mistake. Note that those observations are based on the
assumption that the frequency contents are the same at all angles
of incidence. Nonetheless, in practice, many other factors can also
affect the seismic frequency contents in the offset domain. For ex-

ample, wavelet stretching due to NMO correction often causes the
loss of high frequency for far-offset seismic data.
For the purpose of reservoir evaluation, it is a common practice to

use the seismic reflection amplitude to estimate porosity, water
saturation, or other reservoir properties. Be aware that the field re-
flection observations, which are often centered approximately 40–
60 Hz, already represent the reflection dispersion effect. That is to
say, in heterogeneous reservoir rocks, the classical seismic reflec-
tion interpretation based on the classical Zoeppritz equation and
Gassmann fluid substitution might be misleading. For example,
for the given geologic model, if we use the dispersive seismic re-
flection amplitude to predict porosity, the result will be considerably
underestimated. Consequently, the quantification of the poroelastic
impact on seismic analysis can provide insights to improve quanti-
tative reservoir characterization.
Note that the mesoscopic flow also influences the phase angle to

a considerable degree, and it consequently affects the seismic wave-
form. This implies that a phase shift caused by reflection dispersion
can lead to uncertainty for seismically imaging the precise location
of the geologic feature of interest. In addition, as illustrated in Fig-
ure 5, the significant discrepancy of the seismic amplitude and
phase variation between the surface seismic band and the sonic
log band also suggests that we should be more cautious about
the seismic-to-synthetic well tie in heterogeneous reservoir rocks.

DISCUSSIONS

Equation 25 presents poroelastic Zoeppritz-style reflectivity
incorporating the effect of wave-induced fluid flow. It is important
to realize the physically distinctive differences between this equa-
tion and the classical Zoeppritz equation. Theoretically, the classical
Zoeppritz equation is not applicable for calculating the reflection
coefficients in heterogeneous and dissipative media because the

Figure 6. Comparisons of PS reflectivity dispersion at incident an-
gles of 0°, 15°, and 30°. The dashed line indicates the PS reflection
coefficients computed based on the Zoeppritz equation.

Figure 7. AVO relationship with a different frequency in the seis-
mic band. The central frequency band for the field observation is
often centered at approximately 40–60 Hz. The black dashed line
indicates the reflection computed from the Zoeppritz equation,
which often represents the low-frequency limit for the poroelastic
reflection.
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well-known assumption for the Zoeppritz equation is that the
medium is elastic and nondissipative (Aki and Richards, 1980).
From the perspective of energy conservation, the classical Zoeppritz
equation only takes into account the conservation of elastic energy.
To be specific, the total energy of particle motion, including the
volume of integral of kinetic energy and elastic strain energy
throughout the elastic medium, has been held constant (Aki and
Richards, 1980). However, the “poroelastic” Zoeppritz equation
not only includes the elastic energy but also the dissipative energy,
which comes from the pore pressure diffusion caused by Biot flow
and local viscous flow. Moreover, the reflection calculated based on
the classical Zoeppritz equation cannot give the phase variation with
frequency, which however is an inseparable part of the poroelastic
reflection feature.
It is also necessary to point out that the methodology to compute

poroelastic reflection coefficient here is distinct from the derivation
of reflection coefficients in viscoelastic media (White, 1965; Bour-
bié, 1983; Lines et al., 2008; Quintal et al., 2009; Ren et al., 2009;
Liu et al., 2011; Morozov, 2011). Even though the velocity and at-
tenuation inputs in their methods are considered as frequency de-
pendent, the dynamic interactions regarding the fluid flow between
the upper and lower poroelastic medium are ignored. However, in
our study, the continuity of the increments of fluid content and fluid
pressure in equation 19 explicitly takes into account the dynamic
interaction between the upper and lower heterogeneous poroelastic
medium.
It is well known that AVO gradient information is strongly de-

pendent on the VP∕VS ratio. Therefore, S-wave dispersion charac-
teristics play an important role in understanding frequency-
dependent AVO signatures. S-wave dispersion caused by Biot flow
can be calculated on the basis of Biot’s poroelastic wave propaga-
tion method (Biot, 1956a, 1956b, 1962). Despite the fact that S-
wave dispersion and attenuation due to local flow have been exper-
imentally observed (Adam et al., 2006; Batzle et al., 2006) and nu-
merically simulated (Masson and Pride, 2007; Rubino et al., 2009;
Wenzlau et al., 2010; Quintal et al., 2012), the physical mechanisms
standing behind those observations have not been fully understood
yet. Many poroelastic models have been proposed to quantify P-
wave attenuation in fully saturated elastically heterogeneous or par-
tially saturated media (White, 1975; Dutta and Odé, 1979a, 1979b;
Gelinsky and Shapiro, 1997; Gurevich et al., 1997; Shapiro and
Müller, 1999; Pride and Berryman, 2003a, 2003b; Müller and Gur-
evich, 2004, 2005; Carcione and Picotti, 2006; Müller et al., 2007);
however, no analytical solution concerning the S-wave attenuation
due to local flow is developed. In this study, S-wave dispersion due
to mesoscopic flow is ignored. To fully characterize the angle and
frequency-dependent reflectivity, especially the associated AVO
signatures, an accurate description of S-wave dispersion in a hetero-
geneous porous composite should be investigated in the future.
The double-porosity model we used here is based on the ideali-

zation that heterogeneous porous media can be meaningfully re-
duced to just two distinct porous phases with a single dominant
diffusion length and contrasting properties. The idealization of
the model may limit its application on some complex heterogeneous
reservoirs, which often involves mixing many porous phases and
multiscale heterogeneities in a random manner. Also, to generate
the effective Biot media from the double-porosity model, hetero-
geneity phase 2 is assumed entirely embedded in host phase 1. This
implies that the volume fraction of phase 2 is much smaller com-

pared with that of phase 1, which may not meet the conditions of
real rocks in some geologic scenarios. Besides, in the numerical
example, we assume the geometry of the heterogeneity phase is el-
lipsoidal. This is for the sake of simplicity because in real sedimen-
tary rocks, the heterogeneities often exhibit an extremely complex
and irregular shape. However, the real challenge concerning the
practical implementation of this methodology is the difficulty in
prescribing appropriate physical parameters, such as heterogeneity
size, tortuosity, and bulk modulus in the drained condition.
Similar to any other sedimentary rocks, shales more or less con-

tain heterogeneities to some extent. Such heterogeneities often
come from the presence of microcracks or organic material related
to hydrocarbon generation (Vernik, 1994), compositional variation
due to different depositional environments, and so forth. As a con-
sequence, shales are naturally dispersive materials, even though
they might behave elastically in seismic exploration band due to
their very low permeability characteristics (Batzle et al., 2006).
To investigate the frequency-dependent reflection variations due
to patchy-saturated rocks, Ren et al. (2009) and Liu et al. (2011)
assume that the overlying shale is nondispersive. However, in this
study, to preserve the generality of poroelastic reflection in hetero-
geneous poroelastic media, the overburden shale is considered as a
dispersive medium including mesoscopic heterogeneity. Even the
dispersion effect is not appreciable, and it occurs in a very low fre-
quency domain, as we can see in Figures 2 and 3. The permeability
of shale in our designed geologic model is given as 0.01 md, but the
permeability of shales can vary enormously, from the nanodarcy to
the microdarcy range. Figure 8 illustrates how the permeability of
the overburden shale influences the reflection amplitude. It turns out
that the reflection dispersion curve merely shows a noticeable
change at the low-frequency domain (<10 Hz), with the seismic am-
plitude getting stronger as the permeability of the overburden shale
decreases.
Finally, the present study focuses on theoretical modeling. Con-

clusive evidence for reflection dispersion due to wave-induced fluid
flow from lab measurements and field observations is still lacking.

Figure 8. The effect of permeability of overburden shale on PP re-
flection dispersion at a normal incident angle. The dashed line in-
dicates PP reflection coefficients computed based on the Zoeppritz
equation.
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On the one hand, this is due to the difficulty in making appropriate
measurements. On the other hand, the observed field seismic reflec-
tions may include the contribution of intrinsic attenuation and scat-
tering attenuation due to the presence of extensive heterogeneities.
At the present time, techniques that can reliably separate the total
inferred loss into scattering and intrinsic portions are generally not
available (Pride et al., 2004).

CONCLUSIONS

In the present work, we have quantified the impact of mesoscopic
flow and Biot flow simultaneously on the seismic reflection at the
interface between two heterogeneous porous media. For a typical
reflection interface of heterogeneous porous sandstone overlain
by shale, with the relevant physical parameters used in the numeri-
cal modeling, it is found that (1) wave-induced fluid flow makes the
seismic amplitude and phase angle become frequency- and angle-
dependent, which not only depends on the elastic properties con-
trast, but also strongly relies on the fluid mobility and heterogeneity
features, (2) the poroelastic reflections are identical to the elastic
reflection at the low-frequency limit. However, this only takes place
at frequency ranges below 10−2 Hz, (3) at the seismic exploration
band, the variation of seismic amplitude caused by local mesoscopic
flow is approximately 40%, and a noticeable phase shift (16°) is also
produced, and (4) the global Biot flow effect on reflectivity is al-
most trivial and occurs mainly above the ultrasonic frequency band.
Reflection dispersion effects due to mesoscopic flow cannot be

ignored because the classical quantitative seismic interpretation
might be misleading. Also, the phase variation caused by local flow
can bring uncertainty for seismically imaging the geologic structure.
Additionally, for a wide frequency range, the significant discrep-
ancy of the seismic amplitude and phase variation at surface seis-
mic, VSP, and sonic log frequency bands also suggests that we
should be more cautious about the full integration of geophysical
measurements at various scales in heterogeneous reservoir rocks.
The implications of reflection dispersion for characterization of
heterogeneous reservoirs rocks are encouraging, which leaves open
the possibility of using frequency-dependent seismic attributes to
decipher geologic heterogeneity features and fluid mobility charac-
teristics.
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APPENDIX A

SEISMIC REFLECTION COEFFICIENTS FROM
THE BOUNDARY OF EFFECTIVE BIOT MEDIA

To facilitate computations, we consider Helmholtz decomposi-
tion of the two displacement vectors u and W in the form�

u ¼ ∇φs þ ∇ × ψ s;
W ¼ ∇φf þ ∇ × ψf;

(A-1)

where φs and ψ s are the potential functions associated with the dis-
placement vectors of the rock frame and φf and ψf are the potential

functions associated with the displacement vectors of fluid with re-
spect to the solid frame.
Because the geometry is illustrated in Figure 1, we consider the

seismic reflections at the interface of two effective Biot media. For
2D plane-wave propagation, the displacement potentials of the in-
cident, reflected, and transmitted waves can be written in the form

incident P − wave∶
�
φi
s ¼ Ai

s1e
ikip1ðsin θixþcos θizÞ−iωt;

φi
f ¼ Ai

f1e
ikip1ðsin θixþcos θizÞ−iωt;

(A-2)

reflected SV−wave∶8<
:
φr
s¼φr

s1þφr
s2¼Ar

s1e
ikrp1ðsinθrp1x−cosθrp1zÞ−iωtþAr

s2e
ikrp2ðsinθrp2x−cosθrp2zÞ−iωt;

φr
f¼φr

f1þφr
f2¼Ar

f1e
ikrp1ðsinθrp1x−cosθrp1zÞ−iωtþAr

f2e
iωt−ikrp2ðsinθrp2x−cosθrp2zÞ−iωt;

(A-3)

reflected SV − wave∶
�
ψ r
s ¼ Br

seik
r
sðsin θrsx−cos θrszÞ−iωt;

ψ r
f ¼ Br

fe
ikrsðsin θrsx−cos θrszÞ−iωt;

(A-4)

transmitted P−wave∶8<
:
φt
s¼φt

s1þφt
s2¼At

s1e
iktp1ðsinθtp1xþcosθtp1zÞ−iωtþAt

s2e
iktp2ðsinθtp2xþcosθtp2zÞ−iωt;

φr
f¼φt

f1þφt
f2¼At

f1e
iktp1ðsinθtp1xþcosθtp1zÞ−iωtþAt

f2e
iktp2ðsinθtp2xþcosθtp2zÞ−iωt;

(A-5)

transmitted SV − wave∶
�
ψ t
s ¼ Bt

seik
t
sðsin θtsxþcos θtszÞ−iωt;

ψ t
f ¼ Bt

fe
iktsðsin θtsxþcos θtszÞ−iωt;

(A-6)

where the superscripts i, r, and t denote the incident, reflection, and
transmission waves, respectively; kip1 is the wavenumber of the in-
cident fast P-wave; krp1, k

r
p2, and krs are the wavenumbers of two

reflected P- and reflected S-waves in the effective Biot medium
1, respectively; ktp1, k

t
p2, and kts are the wavenumbers of two trans-

mitted P- and transmitted S-waves in the effective Biot medium 2,
respectively; Am

s1ðm ¼ i; r; tÞ and Am
f1 denote, respectively, the po-

tential amplitude of the fast P-wave associated with the displace-
ment of the rock frame and relative fluid flow; Am

s2ðm ¼ i; r; tÞ
and Am

f2 denote, respectively, the potential amplitude of the second
P-wave associated with the displacement of the rock frame and rel-
ative fluid flow; Bm

s ðm ¼ r; tÞ and Bm
f denote, respectively, the po-

tential amplitude of the S-wave associated with the displacement of
the rock frame and relative fluid flow.
Following the earlier work by Deresiewicz and Rice (1960),

Dutta and Odé (1983), and Dai and Kuang (2006), the potential
of the rock frame displacement is related to that of the relative fluid
flow displacement by a constant. Therefore, we have such a rela-
tionship for medium 1

Ai
f1

Ai
s1

¼ δp11;
Ar
f1

Ar
s1

¼ δp11;

Ar
f2

Ar
s2

¼ δp12; and
Br
f

Br
s
¼ δs1; (A-7)
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and similarly, for medium 2, we have

At
f1

At
s1

¼ δp21;
At
f2

At
s2

¼ δp22; and
Bt
f

Bt
s
¼ δs2; (A-8)

where

δpij ¼
λ�i þ ðα�i Þ2M�

i þ 2μ�i − ρbiVp2
ij

ρfiV2
p − α�i M

�
i

ði ¼ 1;2; j ¼ 1;2Þ;

δsi ¼
μ�i − ρbiV2

si

ρfiV2
si

ði ¼ 1;2Þ:

Here, i ¼ 1 refers to the upper medium 1, and i ¼ 2 refers to the
lower medium 2; and j ¼ 1 refers to the fast P-wave, and j ¼ 2

refers to the slow P-wave. Consequently, VP11, VP12, VS1 and
VP21, VP22, and VS2 are the frequency-dependent fast P-wave veloc-
ity, slow P-wave velocity, and S-wave velocity in the upper medium
and lower medium, respectively.
If we substitute A-7 and A-8 into A-2, A-3, A-4, A-5, and A-6,

we consequently have six unknown amplitudes of the displacement
potentials Ar

s1, A
r
s2, B

r
s, At

s1, A
t
s2, and Bt

s, which correspond to the
potential amplitudes of the reflected fast P-wave, reflected slow P-
wave, reflected S-wave, transmitted fast P-wave, transmitted slow
P-wave, and transmitted S-wave, respectively. Also, they are related
to the six boundary conditions listed in equation 19–24.
Consequently, from the equations in A-1–A-8, we can relate the

potential function to the displacement in media 1 and 2:8>>>>><
>>>>>:

u1x ¼ ∂ðφi
sþφr

sÞ
∂x − ∂ψr

s
∂z ¼ ∂ðφi

sþφr
s1þφr

s2Þ
∂x − ∂ψr

s
∂z ;

u1z ¼ ∂ðφi
sþφr

sÞ
∂z þ ∂ψr

s
∂x ¼ ∂ðφi

sþφr
s1þφr

s2Þ
∂z þ ∂ψ r

s
∂x ;

W1x ¼
∂ðφi

fþφr
fÞ

∂x −
∂ψr

f

∂z ¼ ∂ðδp11φi
sþδp11φ

r
s1þδp12φ

r
s2Þ

∂x − δs1
∂ψr

s
∂z ;

W1z ¼
∂ðφi

fþφr
fÞ

∂z þ ∂ψr
f

∂x ¼ ∂ðδp11φi
sþδp11φ

r
s1þδp12φ

r
s2Þ

∂z þ δs1
∂ψ r

s
∂x ;

(A-9)8>>>>><
>>>>>:

u2x ¼ ∂φt
s

∂x − ∂ψ t
s

∂z ¼ ∂ðϕt
1
þϕt

2
Þ

∂x − ∂ψ t
s

∂z ;

u2z ¼ ∂φt
s

∂z þ ∂ψ t
s

∂x ¼ ∂ðϕt
1
þϕt

2
Þ

∂x þ ∂ψ t
s

∂z ;

W2x ¼
∂φt

f

∂x −
∂ψ t

f

∂z ¼ ∂ðδp21ϕt
1
þδp22ϕ

t
2
Þ

∂x − δs2
∂ψ t

s
∂z ;

W2z ¼
∂φt

f

∂z þ ∂ψ t
f

∂x ¼ ∂ðδp21ϕt
1
þδp22ϕ

t
2
Þ

∂z þ δs2
∂ψ t

s
∂x .

(A-10)

Following the boundary conditions listed in equations 19–24 and
on the basis of the poroelastic stress-strain relationship, we have

u1x ¼ u2x; (A-11)

u1z ¼ u2z; (A-12)

ðλ�1þα�21 M
�
1Þðu1x;xþu1z;zÞþ2μ1u1z;zþα1M�

1ðW1x;xþW1z;zÞ
¼ðλ�2þα�22 M

�
2Þðu2x;xþu2z;zÞþ2μ�2u2z;zþα�2M

�
2ðW2x;xþW2z;zÞ;

(A-13)

μ�1ðu1x;z þ u1z;xÞ ¼ μ�2ðu2x;z þ u2z;xÞ; (A-14)

W1z ¼ W2z; (A-15)

α�1M
�
1ðu1x;x þ u1z;zÞ þM�

1ðW1x;x þW1z;zÞ
¼ α�2M

�
2ðu2x;x þ u2z;zÞ þM�

2ðW2x;x þW2z;zÞ. (A-16)

Note that the boundary conditions require that the phase factors
must be equal at z ¼ 0 for all x and t, and hence we have

kip1 sin θix ¼ krp1 sin θrp1 ¼ krp2 sin θrp2 ¼ krs sin θrs

¼ ktp1 sin θtp1 ¼ ktp2 sin θtp2 ¼ kts sin θts:

(A-17)

Equation A-17 is Snell’s law for reflection and transmission in ef-
fective Biot media. Now, we substitute equations A-2–A-10 into the
boundary condition A-11–A-16 and set z ¼ 0 for all x and t. Then,
we can obtain the Zoeppritz-style reflection and transmission coef-
ficients of elastic waves from the boundary of effective Biot media,
which are given in equations 25–28. Here, we define the reflection
and transmission coefficients as the amplitude ratios for the matrix
displacement.
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