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Summary 
 
In this study, we find that variation of Hashin-Shtrikman 
bounds caused by pore fluid change is governed by the 
Biot-Gassmann theory.  Also, we have shown that it is 
generally valid to assume that the relative position of the 
effective moduli of a rock within the Hashin-Shtrikman 
bounds is not affected by pore fluid change. Thus Hashin-
Shtrikman bounds can be used as a valid fluid substitution 

tool. Comparing with Gassmann fluid substitution, the 
velocity predicted by Hashin-Shtrikman bounds generally 
fits better with the measured data since part of the 
dispersion is included, and it can be used as a more general 
pore infill substitution tool. 
 

Introduction 
 
Hill (1963) suggested that an arithmetic average of the 
Voigt-Reuss bounds might be a good estimate for the 
effective moduli of a two phase media.  Marion and Nur 
(1990) extended Hill’s idea  and stated that the effective 

moduli is better approximated by a weighted average 
between any upper bound (M+) and lower bound (M-):   
 
                                                                             (1) 
 
They define w as a measure of the average stiffness of the 
pore space. When pore fluid changes, the bounds might 
also change. But without any theoretical justification, they 
simply assume that weighting factor keeps constant. By 
assuming constant weighting factor, the effective moduli 
with new pore fluids can be calculated from the old 

effective moduli, old bounds and new bounds. This method 
of fluid substitution is called Balance Average Method 
(BAM) by Marion and Nur (1990). Also they found that if 
the Hashin-Shtrikman bounds are used, effective moduli 
predicted by the BAM method can fitter better with 
measured data than those predicted by Gassmann 
equations. 
 
It must be pointed out the definition of w as a measure of 
the average stiffness of pore space and the assumption of 
constant w (not affected by pore fluid change) are 
contradictory: It is well known the stiffness of pore space is 

affected or even sensitive to pore fluid compressibility 
(Brown and Korringa, 1975 and Thomsen, 2010).  
 
Deficient of theoretical justification the BAM method is 
rarely used in the industry. The primary goal of this paper 
is to theoretically prove that the BAM method using 
Hashin-Shtrikman can be a valid fluid substitution tool.   

Consistency with Biot-Gassmann theory 

 
The Hashin-Shtrikman bounds for bulk modulus and shear 
modulus are given by (Hashin and Shtrikman, 1963): 
 
  
      (2) 
 
 

  
       (3) 
 
 
Assuming the pore space is empty with Kf=0 and Gf=0, 
from the Hashin-Shtrikman upper bound we have 
 
      (4) 
        
 
Using the lemma if a/b=c/d and then a/(b-a)=c/(d-c), 
equation (4) can be rewritten as : 

 
 
                                                                           (5) 
 
Assuming pore spaces are saturated, from Hashin-
Shtrikman upper bound: 
 
 
                                                                           (6) 
 
 

Similarly it can be rewritten as 
 
 
                                                                            (7) 
 
 
Let equation (7) subtract (5) and after simplification, we 
can get 
 
 
                                                                        (8) 
 

 
Thus the Hashin-Shtrikman upper bound for bulk modulus 
is consistent with Biot-Gassmann theory. Similarly, for the 
Hashin-Shtrikman lower bound of bulk modulus, we can 
get 
  
                                             (9) 
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Hashin-Shtrikman Bounds  

 
 
This is actually Gassmann equation for special case when 
dry bulk modulus equals to zero, so that the Hashin-
Shtrikman low bound for bulk modulus is also consistent 
with Biot-Gassmann theory. 

 
If we assume shear modulus of pore fluid is zero, then pore 
fluid has no effect on Hashin-Shtrikman upper bound or 
lower bound for shear modulus.  
 
In summary, the Hashin-Shtrikman bounds are consistent 
with Biot-Gassmann theory. Similar to Gassmann equation 
for a rock saturated with different pore fluids (Mavko, and 
et. al., 1998), it is straightforward from above derivation 
that we can have 
 
 

            (10) 
 
 
                                                                                      (11) 
 

 

Normalized stiffness 
 
The effective moduli of natural porous rock usually lie 
within the relative Hashin-Shtrikman upper bound and 
lower bound.  As shown in Fig. 1, if the pore fluid 1 in a 

rock is replaced by pore fluid 2, then both the Hashin-
Shtrikman bounds of bulk modulus and the effective bulk 
modulus of the saturated rock will change. To describe the 
relative position of the effective moduli of a rock within 
corresponding Hashin-Shtrikman bounds, we define a 
parameter yK as:  
 
      (12)  

 
 
We call it normalized bulk stiffness of a mixture of a 
certain composition. Similarly we can define the 
normalized shear stiffness as: 
 

      (13) 
 
 
Here the normalized stiffness is intrinsically the weighting 
coefficient used in BAM method and ranges between 0 and 
1. For a rock of certain composition, its Hashin-Shtrikman 
bounds are constants; and the relative position of the 
effective moduli of a rock within the bounds is determined 
by the digenesis (sorting, grain contact, cementing, and 
pore geometry and et. al.) and stress state of the rock. So it 
has important physical meaning.  
 

We have shown that variation of Hashin-Shtrikman bounds 
caused by pore fluid change is governed by Biot-Gassmann 
theory. For a real rock whose effective moduli lying within 
the bounds, we don’t know how the normalized stiffness 
changes with pore fluid, but we can assume that it is also 
governed by Bio-Gassmann theory and then study how it 
varies with pore fluid. Here we consider the extreme case 
of pore fluid change: from dry rock to fully saturated rock.  
 
For a dry rock, the low bound of bulk modulus is zero, so 
that the normalized bulk stiffness of dry rock is 

 
                                     (14) 
 
 
When this rock is fully saturated, we have 
 
       (15) 
 
 
Let equation (15) minus equation (14) and then replace the 
saturated bulk moduli with dry bulk moduli, fluid bulk 

modulus (Kf) and matrix bulk modulus (Km) using the 
Gassmann relations, and after simplification we can get 
 
 
 
 
 
      (16) 
 
By analyzing the physical meanings and relations of the 
parameters in the right side of equation (16), we can see 
that each of the three terms ranges between 0 and 1; usually 

the cubic power of a quantity ranging from 0 and 1 should 
be much small relative to 1. There is a minus sigh ahead of 
these three terms. So from above analysis we can see that 

 
Figure 1: Sketch of variation of Hashin-Shtrikman bounds and 

normalized stiffness caused by pore fluid change 
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Hashin-Shtrikman Bounds  

when a dry rock is fully saturated, the normalized bulk 
stiffness will slightly decrease. If we make an 
approximation by assuming the normalized stiffness is 
constant, then the P-wave velocity of saturated rock will be 
slightly overestimated comparing to that prediction by 

Biot-Gassmann theory.   
 

Sensitivity analysis 
 
From the third term of the right side of equation (16), the 
higher the porosity, Km and the ratio of Km over Kf, the 
smaller is change of the normalized stiffness. The effect of 
Kdry is not clear from the formulation.  To have direct 
understanding of the effect of pore fluids on variation of the 
normalized stiffness, sensitivity analysis was made using 
reasonable rock parameters, as shown in Figure 2. Here 

with shaly sandstone in mind, we select Km=Gm=35GPa,  
grain density 2.63 g/cc, fluid bulk modulus 2.2 GPa and 
fluid density 1.0 g/cc. The panel (a) shows the sensitivity of 
variation of normalized stiffness to porosity and the 
original dry rock stiffness, if the porosity is higher than 
10%, the change of normalized stiffness caused by pore 
fluid can be negligible.    
 
In panel (b), we assume that pore fluid has  no effect on the 
normalized stiffness and then use Hanshin-Shtrikman 
bounds for fluid substitution and the calculated velocity is 

denote as VpHS. The predicted P-wave velocity by 
Gassmann fluid substitution is denoted as VpGA. From panel 
(b) we can see that velocity predicted by Hashin-Shtrikman 
bounds is always slightly higher than that predicted by 
Gassmann equation, the maximum velocity difference 
occurring around porosity of 5% is less than 2.5%. So even 

for dense rock, the velocity error caused by assumption of 
constant normalized stiffness is not significant.  
 

Example 
 
We use Han’s data (1986) to demonstrate the applicability 
of Hashin-Shtrikman bounds on fluid substitution.  The 
general form of Hashin-Shtrikman bounds by Berryman 
(1995) is used for calculation since the actual rock is 
usually composited of more than two components. Figs. 3 
to 7 show the result. For Figs 3 to 6, only data measured at 
differential pressure of 50 MPa is used.  

 
Fig. 3 shows the correlations between normalized stiffness 
of dry and saturated rock, and between normalized stiffness 
of dry rock and the stiffness predicted by Biot-Gassmann 
theory. From Figure 3, most of the data points distributed 

 
Figure 3: Comparing of normalized bulk stiffness of dry 

rock, saturated rock and Gassmann predicted  

 
Figure 4: Comparing of normalized shear stiffness of dry 
and saturated rock. 

 
Figure 2: Sensitivity analysis 
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Hashin-Shtrikman Bounds  

along the perfect line, which means that the saturation does 
not have significant effect on normalized bulk stiffness, but 
for some core samples, the saturated bulk stiffness is much 
higher than the dry bulk stiffness; this might be caused by 
clay swelling effect or dispersions. The normalized 
stiffness predicted by Biot-Gassmann theory is always 

lower than that estimated from the measured data.  The 
results comply with the theoretically analysis we made in 
previous section. Thus fluid substitution by Hashin-
Shtrikman bounds with assumption of constant normalized 
bulk stiffness will generally fit better with measured data 
than Biot-Gassmann theory.  
 
Fig. 4 shows the correlation between shear stiffness of dry 
and saturated rocks. As theoretically predicted the 
normalized stiffness is basically not affected by pore fluids. 
But for some core samples of shaly sandstone, there is 

obvious shear weakening phenomena. Combined with Fig. 
5, the clay swelling effect outlined by the dashed circle is 
more easily identified and understood. It should be noted 
that there are many different types of clay minerals and the 
swelling behaviors are very different.   
 

In Fig. 6, we compare the P-wave velocity predicted by 
Gassmann’s equations and Hashin-Shtrikman bounds 
respectively using measured ultrasonic velocity. It can be 
seen that generally the P-wave velocity predicted by 
Hashin-Shtrikman bounds fit better with the measured data. 
This is because part of the dispersion effect is included in 
the velocity predicted by Hashin-Shtrikman bounds while 
velocity predicted by Biot-Gassmann theory is a low limit.  
Again, the comparison results comply with our previous 
theoretical analysis.  
 
Fig. 7 shows stress effect on normalized stiffness for some 

of the core samples cited frequently in the literatures. The 
data are fitted with the general stress effect model (Yan and 
Han, 2007). It can be seen that the normalized stiffness 
might be very sensitive to stress effect. We have shown that 
the normalized stiffness is not sensitive to pore fluid 
(saturation) for porous reservoir rock. Thus this might be an 
import feature to discriminate saturation effect and stress 
effect for time lapse seismic study.   
 
As shown in Marion and Nur’s (1991) study, one potential 
application of fluid substation by Hashin-Shtrikman bounds 

is on heavy oil sands. The concept of “dry rock” is fuzzy 
when the pore infill is semi-liquid heavy oil. It is possible 
to model the normalized stiffness as function of 
temperature, stress and frequency, and then the P-wave 
velocity as function of these parameters can be modeled. 
We will discuss this problem especially in another paper.  

 

Conclusions 
 
The Hashin-Shtrikman bounds are consistent with Biot-
Gassmann theory and they can be used as a valid fluid 

substitution tool. The normalized stiffness of a rock is not 
sensitive to saturation effect, but can be very sensitive to 
stress effect.  
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Figure 5: Clay swelling/shrinkage effect outlined by 

interpretation of normalized stiffness 

 
Figure 6: Comparing fluid substitutions by Gassmann and by 

Hashin-Shtrikman bounds respectively 

 
Figure7: Stress effect on normalized stiffness 
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